Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 104203    DOI: 10.1088/0256-307X/35/10/104203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Magneto and Electro-Optic Intensity Modulator Based on Liquid Crystal and Magnetic Fluid Filled Photonic Crystal Fiber
Yue-Lan Lu1, Fei-Ru Wang1,2, Chi Zhang1, Ji-Wen Yin2, Yu Huang1, Wei-Min Sun1, Yong-Jun Liu1**
1Key Lab of In-fiber Integrated Optics (Ministry Education), Harbin Engineering University, Harbin 150001
2Physics and Electronic Information Engineering, Chifeng University, Chifeng 024000
Cite this article:   
Yue-Lan Lu, Fei-Ru Wang, Chi Zhang et al  2018 Chin. Phys. Lett. 35 104203
Download: PDF(711KB)   PDF(mobile)(708KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a novel light intensity modulator based on magnetic fluid and liquid crystal (LC) filled photonic crystal fibers (PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/μm at 20 Hz and the cut-off magnetic field is 195 mT. This simple and compacted optical modulator will have a great prospect in sensing applications.
Received: 20 July 2018      Published: 15 September 2018
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  83.80.Xz (Liquid crystals: nematic, cholesteric, smectic, discotic, etc.)  
  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
Fund: Supported by the Joint Research Fund in Astronomy under Cooperative Agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences under Grant No U1531102, the Fundamental Research Funds for the Central Universities under Grant No HEUCF181116, and the National Natural Science Foundation of China under Grant Nos 61107059, 61077047 and 11264001.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/10/104203       OR      https://cpl.iphy.ac.cn/Y2018/V35/I10/104203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue-Lan Lu
Fei-Ru Wang
Chi Zhang
Ji-Wen Yin
Yu Huang
Wei-Min Sun
Yong-Jun Liu
[1]Russell P 2003 Science 299 358
[2]Birks T A, Knight J C and Russell P St J 1997 Opt. Lett. 22 961
[3]Peng Y, Hou J, Zhang Y et al 2013 Opt. Lett. 38 263
[4]Dhara P and Singh V K 2015 Opt. Fiber Technol. 21 154
[5]Gangwar R K and Singh V K 2015 Photon. Nanostruct. Fundam. Appl. 15 46
[6]Harvey J D, Leonhardt R, Coen S et al 2003 Opt. Lett. 28 2225
[7]Wong G K L, Chen A Y H, Ha S W et al 2005 Opt. Express 13 8662
[8]Lenihan S A, Salem R, Murphy T E et al 2006 IEEE Photon. Technol. Lett. 18 1329
[9]Li X P, Hu W S and Yu H L 2017 Chin. J. Liq. Cryst. Displays 32 234
[10]Liu X Q, Liu Y G and Wang Z 2017 Liq. Cryst. 44 479
[11]Luo X P, Wang F R, Chen C L et al 2017 Chin. Phys. Lett. 34 124203
[12]Hu D J J, Lim K J L, Cui Y P P et al 2012 IEEE Photon. Technol. Lett. 4 1248
[13]Alkeskjold T T, Laegsgaard J, Bjarklev A et al 2006 Appl. Opt. 45 2261
[14]Alkeskjold T T, Laegsgaard J, Bjarklev A et al 2004 Opt. Express 12 5857
[15]Du F, Lu Y Q and Wu S T 2004 Appl. Phys. Lett. 85 2181
[16]Miao Y P, Liu B, Zhang K L et al 2011 Appl. Phys. Lett. 98 021103
[17]Zu P, Chan C C, Gong T X et al 2012 Appl. Phys. Lett. 101 241118
[18]Scolari L, Alkeskjold T T, Riishede J et al 2005 Opt. Express 13 7483
[19]Wang J L, Du M Q, Zhang L L et al 2015 Acta Phys. Sin. 64 12070 (in Chinese)
[20]Orsay Liquid Crystal Group 1970 Phys. Rev. Lett. 25 1642
[21]Gennes D P 1973 The Physics of Liquid Crystal (Oxford: Oxford University)
[22]Maier V W and Saupe A 1960 Teil II. Naturforsch 15a 287
Related articles from Frontiers Journals
[1] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 104203
[2] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 104203
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 104203
[4] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 104203
[5] Xiang-Shu Liu, Yang Ren, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Nonlinear Excitation and State Transition of Multi-Peak Solitons[J]. Chin. Phys. Lett., 2018, 35(7): 104203
[6] Xiang-Shu Liu, Li-Chen Zhao, Liang Duan, Peng Gao, Zhan-Ying Yang, Wen-Li Yang. Interaction between Breathers and Rogue Waves in a Nonlinear Optical Fiber[J]. Chin. Phys. Lett., 2018, 35(2): 104203
[7] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 104203
[8] Hui-Feng Wei, Sheng-Ping Chen, Jing Hou, Kang-Kang Chen, Jin-Yan Li. A Double-Cladding Seven-Core Photonic Crystal Fiber for Hundred-Watts-Level All-Fiber-Integrated Supercontinuum Generation[J]. Chin. Phys. Lett., 2016, 33(06): 104203
[9] Liang Qiao, Tao Wang, Zhong-Lei Mei, Xi-Ling Li, Wen-Bo Sui, Li-Yun Tang, Fa-Shen Li. Analyzing Bandwidth on the Microwave Absorber by the Interface Reflection Model[J]. Chin. Phys. Lett., 2016, 33(02): 104203
[10] Liang Duan, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Optical Rogue Wave Excitation and Modulation on a Bright Soliton Background[J]. Chin. Phys. Lett., 2016, 33(01): 104203
[11] LIU Lan-Lan, WU Chong-Qing, SHANG Chao, WANG Jian, GAO Kai-Qiang. Quaternion Approach to Solve Coupled Nonlinear Schr?dinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems[J]. Chin. Phys. Lett., 2015, 32(08): 104203
[12] LI Lu, PANG Li-Hui, ZHOU Zhi-Guang, ZHANG Ai-Dong, HE Jian-Li, SI Jin-Hai, LIN Ao-Xiang. Design of a Solid-Core Large-Mode-Area Bragg Fiber[J]. Chin. Phys. Lett., 2015, 32(5): 104203
[13] HU Xue-Juan, GUO Chun-Yu, RUAN Shuang-Chen. Wavelength-Tunable Rectangular Pulse Dissipative Soliton Operation of an Erbium-Doped Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2014, 31(04): 104203
[14] YANG Jin-Hui, GUO Chun-Yu, RUAN Shuang-Chen, OUYANG De-Qin, LIN Huai-Qin, WU Yi-Ming. High-Energy Rectangular Pulse Dissipative Soliton Generation in a Long-Cavity Sigma-Shaped Configuration Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2014, 31(2): 104203
[15] ZHU Xian, ZHANG Xin-Ben, CHEN Xiang, PENG Jing-Gang, DAI Neng-Li, LI Jin-Yan. Blue-Extended Supercontinuum Generation in Photonic Crystal Fibers with Picosecond Pulse Pumping[J]. Chin. Phys. Lett., 2012, 29(12): 104203
Viewed
Full text


Abstract