FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High-Efficiency Wide-Band Cross-Polarization Conversion Using Bi-layered Metal Hole Pairs |
Yong Zhang**, Xian-Ke Li, Cheng-Ping Huang** |
Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816
|
|
Cite this article: |
Yong Zhang, Xian-Ke Li, Cheng-Ping Huang 2018 Chin. Phys. Lett. 35 104204 |
|
|
Abstract We present a polarization converter composed of bi-layered metal films perforated with rectangle hole pairs in each film. The proposed converter can convert the polarization of an incident linearly-polarized electromagnetic wave to its orthogonal direction with high efficiency and large bandwidth in the infrared or microwave regions. To make sure of the mechanism of polarization conversion, the current and electric-field distributions at different resonant frequencies are analyzed. It is found that the cross-polarized transmission is due to the near-field coupling between hole pairs in neighboring metal films. Finally, a prototype of the proposed converter is fabricated and measured in the microwave region. Good agreement between the experimental and simulated results is obtained.
|
|
Received: 12 June 2018
Published: 15 September 2018
|
|
PACS: |
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Ja
|
(Polarization)
|
|
42.79.Ag
|
(Apertures, collimators)
|
|
|
|
|
[1] | Konnen G P 1985 Polarized Light in Nature (Cambridge: Cambridge University Press) | [2] | Hech E 1988 Optics (New York: Addison-Wesley) | [3] | Hess O et al 2012 Nat. Mater. 11 573 | [4] | Cheng H et al 2013 Appl. Phys. Lett. 103 223102 | [5] | Song K et al 2013 Opt. Express 21 7439 | [6] | Zhu W R et al 2013 J. Opt. 15 125101 | [7] | Chen H T et al 2016 Rep. Prog. Phys. 79 076401 | [8] | Glybovski S B et al 2016 Phys. Rep. 634 1 | [9] | Romain X et al 2016 Phys. Rev. B 94 045407 | [10] | Huang C P et al 2017 Appl. Phys. Express 10 112201 | [11] | Yin X H et al 2013 Nano Lett. 13 6238 | [12] | Wang Y H et al 2016 J. Opt. 18 055004 | [13] | Fan R H et al 2015 Adv. Mater. 27 1201 | [14] | Zhang C, Pfeiffer C, Jang T, Ray V, Junda M, Uprety P, Podraza N, Grbic A and Guo L J 2016 Laser Photon. Rev. 10 791 | [15] | Zhang Y, Zhu J Z, Huang C P and Ma S J 2017 J. Lightwave Technol. 35 4817 | [16] | Cong L Q, Zhang X Q, Tian Z, Gu J Q, Singh R J, Han J G and Zhang W L 2013 Appl. Phys. Lett. 103 171107 | [17] | Li T, Liu H, Wang S M, Yin X G, Wang F M, Zhu S N and Zhang X 2008 Appl. Phys. Lett. 93 021110 | [18] | Liu W, Chen S Q, Li Z C, Cheng H, Yu P, Li J X and Tian J G 2015 Opt. Lett. 40 3185 | [19] | Son T V, Truong V V, Do P A and Hache A 2016 AIP Adv. 6 085102 | [20] | Li T, Wang S M, Cao J X, Liu H and Zhu S N 2010 Appl. Phys. Lett. 97 261113 | [21] | Xiao X, Li Y, Hou B, Zhou B and Wen W 2012 Opt. Lett. 37 3594 | [22] | Huang C P, Wang Q J, Yin X G, Zhang Y, Li J Q and Zhu Y Y 2014 Adv. Opt. Mater. 2 723 | [23] | Ye Y Q and He S L 2010 Appl. Phys. Lett. 96 203501 | [24] | Taflove A and Hagness S C 2005 Computational Electrodynamics: The Finite Difference Time Domain Method (Boston: Artech House Publishers) | [25] | Palik E 1985 Handbook of Optical Constants of Solids II (Cambridge: Academic Press) | [26] | Serway R A 1998 Principles of Physics (Fort Worth: Saunders College Publisher) | [27] | Koerkamp K J K, Enoch S, Segerink F B, Hulst N F V and Kuipers L 2004 Phys. Rev. Lett. 92 183901 | [28] | Huang C P, Zhang Y, Wang Q J, Yin X G, Wang G D, Liu J Q and Zhu Y Y 2011 J. Phys. Chem. C 115 24621 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|