Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 100301    DOI: 10.1088/0256-307X/35/10/100301
GENERAL |
Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction
Meng Qin**, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li
Department of General Education, Army Engineering University of PLA, Nanjing 211101
Cite this article:   
Meng Qin, Li Wang, Bili Wang et al  2018 Chin. Phys. Lett. 35 100301
Download: PDF(579KB)   PDF(mobile)(572KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum entanglement represents a fundamental feature of quantum many-body systems. We combine tripartite entanglement with quantum renormalization group theory to study the quantum critical phenomena. The Ising model and the Heisenberg $XXZ$ model in the presence of the Dzyaloshinskii–Moriya interaction are adopted as the research objects. We identify that the tripartite entanglement can signal the critical point. The derivative of tripartite entanglement shows singularity as the spin chain size increases. Furthermore, the intuitive scaling behavior of the system selected is studied and the result allows us to precisely quantify the correlation exponent by utilizing the power law.
Received: 17 May 2018      Published: 15 September 2018
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20171397, the Foundation for Encouragement of Department of General Education, and the Pre-Research Foundation of Army Engineering University of PLA.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/10/100301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I10/100301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meng Qin
Li Wang
Bili Wang
Xiao Wang
Zhong Bai
Yanbiao Li
[1]Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2]Horodecki P and Horodecki R 2001 Quantum Inf. Comput. 1 45
[3]Lo R, D'Arrigo A, Falci G, Compagno G and Paladino E 2014 Phys. Rev. B 90 054304
[4]D'Arrigo A, Franco R L, Benenti G, Paladino E and Falci G 2014 Ann. Phys. 350 211
[5]Duran D, Vercin A and Yilmaz S 2014 Phys. Rev. A 90 042320
[6]Zhang G F and Li S S 2006 Opt. Commun. 260 347
[7]Zhang G F and Li S S 2006 Solid State Commun. 138 17
[8]Zheng Q, Yao Y and Xu X W 2015 Commun. Theor. Phys. 63 279
[9]Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[10]Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
[11]Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402
[12]Basu B, Bandyopadhyay P and Majumdar P 2015 Phys. Rev. A 92 022343
[13]Wilson K G 1975 Rev. Mod. Phys. 47 773
[14]Jafari R, Kargarian M, Langari A and Siahatgar M 2008 Phys. Rev. B 78 214414
[15]Jafari R 2013 Phys. Lett. A 377 3279
[16]Qin M, Ren Z Z and Zhang X 2016 Sci. Rep. 6 26042
[17]Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 83 062309
[18]Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 84 042302
[19]Kargarian M, Jafari R and Langari A 2009 Phys. Rev. A 79 042319
[20]Kargarian M, Jafari R and Langari A 2008 Phys. Rev. A 77 032346
[21]Kargarian M, Jafari R and Langari A 2007 Phys. Rev. A 76 060304
[22]Zhang G F 2007 Phys. Rev. A 75 034304
[23]Zhang G F 2007 J. Phys. 19 456205
[24]Kikuchi T, Koretsune T, Arita R and Tatara G 2016 Phys. Rev. Lett. 116 247201
[25]Qin M, Zhai X Y, Chen X, Li Y B, Wang X and Bai Z 2012 Chin. Phys. Lett. 29 030305
[26]Zhang Z D 2007 Philos. Mag. 87 5309
[27]Zhou Z W, Yu B, Zhou X X et al 2004 Phys. Rev. Lett. 93 010501
[28]Guo J L, Wang L and Long G L 2013 Ann. Phys. 330 192
[29]Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[30]Sabín C and García-Alcaine G 2008 Eur. Phys. J. D 48 435
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 100301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 100301
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 100301
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 100301
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 100301
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 100301
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 100301
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 100301
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 100301
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 100301
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 100301
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 100301
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 100301
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 100301
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 100301
Viewed
Full text


Abstract