Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 100401    DOI: 10.1088/0256-307X/35/10/100401
GENERAL |
Gravitational Perturbations in Einstein Aether Black Hole Spacetime
Chi-Kun Ding1,2**
1Department of Physics, Hunan University of Humanities, Science and Technology, Loudi 417000
2Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081
Cite this article:   
Chi-Kun Ding 2018 Chin. Phys. Lett. 35 100401
Download: PDF(577KB)   PDF(mobile)(564KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the gravitational perturbations in Einstein aether black hole spacetime and find that the quasinormal modes (QNMs) of the first kind of aether black hole are similar to that of a Lorentz violation (LV) model, the quantum electrodynamics (QED) extension limit of standard model extension. These similarities between completely different backgrounds may imply that LV in the gravity sector and LV in the matter sector have some connections: damping QNMs more rapidly and prolonging its oscillation period. Compared to the Schwarzschild case, the first kind of black holes have larger damping rates and the second ones have lower damping rates, and they all have smaller real oscillation frequency. These differences could be detected by the new generation of gravitational antennas.
Received: 02 June 2018      Published: 15 September 2018
PACS:  04.50.Kd (Modified theories of gravity)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.30.-w (Gravitational waves)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11247013, and the Fund under Grant No QSQC1708.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/10/100401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I10/100401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chi-Kun Ding
[1]Abbott B P et al 2016 Phys. Rev. Lett. 116 061102
[2]Abbott B P et al 2017 Phys. Rev. Lett. 119 141101
[3]Driggers J and Vitale S 2017 arXiv:1706.06183
[4]Mattingly D 2005 Living Rev. Relativ. 8 5
[5]Dai W M, Guo Z K, Cai R G and Zhang Y Z 2017 Eur. Phys. J. C 77 386
[6]Colladay D and Kostelecký V A 1997 Phys. Rev. D 55 6760
Colladay D and Kostelecký V A 1998 Phys. Rev. D 58 116002
Kostelecký V A 2004 Phys. Rev. D 69 105009
[7]Coleman S R and Glashow S L 1997 Phys. Lett. B 405 249
Coleman S R and Glashow S L 1999 Phys. Rev. D 59 116008
Myers R C and Pospelov M 2003 Phys. Rev. Lett. 90 211601
[8]Rubtsov G, Satunin P and Sibiryakov S 2017 J. Cosmol. Astropart. Phys. 05 049
[9]Jacobsonb T and Mattingly D 2001 Phys. Rev. D 64 024028
Jacobson T 2007 Proceedings of Science, From Quantum to Emergent Gravity: Theory and Phenomenology (Trieste, Italy 11–15 June 2007) p 020
[10]Jacobson T and Mattingly D 2001 Phys. Rev. D 63 041502
[11]Greenwald J, Lenells J, Lu J X, Satheeshkumar V H and Wang A 2011 Phys. Rev. D 84 084040
Wang A 2017 Int. J. Mod. Phys. D 26 1730014
Ho F H, Zhang S, Liu H and Wang A 2018 Phys. Lett. B 782 723
[12]Berglund P, Bhattacharyya J and Mattingly D 2012 Phys. Rev. D 85 124019
[13]Ding C, Wang A and Wang X 2015 Phys. Rev. D 92 084055
[14]Ding C, Liu C, Wang A and Jing J 2016 Phys. Rev. D 94 124034
[15]Oost J, Mukohyama S and Wang A 2018 Phys. Rev. D 97 124023
[16]Gong Y, Hou S and Liang D 2018 Phys. Rev. D 97 084040
[17]Ding C 2017 Phys. Rev. D 96 104021
[18]Chandrasekhar S 1985 The Mathematical Theory of Black Holes 3rd edn (Oxford: Clarendon Press)
[19]Chen S and Jing J 2010 Phys. Lett. B 687 124
[20]Chen S, Wang B and Su R 2006 Class. Quantum Grav. 23 7581
[21]Konoplya R A 2003 Phys. Rev. D 68 024018
[22]Iyer S 1987 Phys. Rev. D 35 3632
[23]Konoplya R A and Zhidenko A 2007 Phys. Lett. B 648 236
[24]Fernando S and Holbrook C 2006 Int. J. Theor. Phys. 45 1630
Fernando S 2005 Gen. Relativ. Gravit. 37 585
Related articles from Frontiers Journals
[1] P. H. R. S. Moraes, Pradyumn Kumar Sahoo, Shreyas Sunil Kulkarni, Shivaank Agarwal. An Exponential Shape Function for Wormholes in Modified Gravity[J]. Chin. Phys. Lett., 2019, 36(12): 100401
[2] Safiqul Islam, Shantanu Basu. Magnetic Field of a Compact Spherical Star under f(R,T) Gravity[J]. Chin. Phys. Lett., 2018, 35(9): 100401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 100401
[4] ZHANG Ming, YUE Rui-Hong, YANG Zhan-Ying. Critical Behavior of Black Holes in an Einstein–Maxwell Gravity with a Conformal Anomaly[J]. Chin. Phys. Lett., 2015, 32(02): 100401
[5] M. Farasat Shamir, Adil Jhangeer, and Akhlaq Ahmad Bhatti. Conserved Quantities in f(R) Gravity via Noether Symmetry[J]. Chin. Phys. Lett., 2012, 29(8): 100401
[6] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 100401
[7] ZHANG Tao, WU Pu-Xun, YU Hong-Wei, ** . Gödel-Type Universes in f(R) Gravity with an Arbitrary Coupling between Matter and Geometry[J]. Chin. Phys. Lett., 2011, 28(12): 100401
[8] AO Xi-Chen**, LI Xin-Zhou, XI Ping . Cosmological Dynamics of de Sitter Gravity[J]. Chin. Phys. Lett., 2011, 28(4): 100401
[9] Arbab I. Arbab. Viscous Dark Energy Models with Variable G and Λ[J]. Chin. Phys. Lett., 2008, 25(10): 100401
[10] ZHOU Xiao-Ying, HE Jian-Hua. Gravitational Waves in f(R) Gravity[J]. Chin. Phys. Lett., 2014, 31(09): 100401
Viewed
Full text


Abstract