Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 067901    DOI: 10.1088/0256-307X/34/6/067901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fast Measurement of Dielectric Conductivity for Space Application by Surface Potential Decay Method
Rong-Hui Quan1**, Kai Zhou1, Mei-Hua Fang1, Wei-Ying Chi2, Zhen-Long Zhang3
1College of Aeronautics and Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
2Shanghai Institute of Space Power Sources, Shanghai 200040
3National Space Science Center, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Rong-Hui Quan, Kai Zhou, Mei-Hua Fang et al  2017 Chin. Phys. Lett. 34 067901
Download: PDF(460KB)   PDF(mobile)(459KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Surface potential decay of polymers for electrical insulation can help to determine the dark conductivity for spacecraft charging analysis. Due to the existence of radiation-induced conductivity, it decays fast in the first few hours after irradiation and exponentially slowly for the remaining time. The measurement of dark conductivity with this method usually takes the slow part and needs a couple of days. Integrating the Fowler formula into the deep dielectric charging equations, we obtain a new expression for the fast decay part. The experimental data of different materials, dose rates and temperatures are fitted by the new expression. Both the dark conductivity and the radiation-induced conductivity are derived and compared with other methods. The result shows a good estimation of dark conductivity and radiation-induced conductivity in high-resistivity polymers, which enables a fast measurement of dielectric conductivity within about 600 min after irradiation.
Received: 19 January 2017      Published: 23 May 2017
PACS:  79.20.Ap (Theory of impact phenomena; numerical simulation)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  77.22.Jp (Dielectric breakdown and space-charge effects)  
  06.30.Ka (Basic electromagnetic quantities)  
Fund: Supported by the Fundamental Research Funds for the Central Universities in Nanjing University of Aeronautics and Astronautics under Grant No NS2014089.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/067901       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/067901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rong-Hui Quan
Kai Zhou
Mei-Hua Fang
Wei-Ying Chi
Zhen-Long Zhang
[1]Lai S T 2003 IEEE Trans. Plasma Sci. 31 1118
[2]Li G C, Min D M, Li S T, Zheng X Q and Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese)
[3]Feng G B, Wang H, Hu T C and Cao M 2015 Chin. Phys. B 24 117901
[4]Min D M, Cho M G, Li S T and Khan A R 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1465
[5]Cao M, Wang F, Liu J and Zhang H B 2012 Chin. Phys. B 21 127901
[6]Frederickson A R and Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284
[7]Quan R H, Han J W and Zhang Z L 2013 Acta Phys. Sin. 62 222 (in Chinese)
[8]Brian P B, Joel T E and Jonathan J L 2015 IEEE Trans. Plasma Sci. 43 2817
[9]Fowler J F 1956 Proc. R. Soc. A 236 464
[10]Whittlesey A and Garrett H B 2011 NASA-HDBK-4002A A91
[11]Hanna R, Paulmier T, Molinie P and Balcon N 2014 J. Appl. Phys. 115 033713
[12]Quan R H, Han J W and Huang J G 2007 Acta Phys. Sin. 56 6642 (in Chinese)
[13]Howlader M M R, Kinoshita C, Shiiyama K and Higuchi T 2001 J. Appl. Phys. 89 1612
[14]Dennison J R, Gillespie J, Hodges J, Hoffmann R C, Abbott J, Hart S and Hunt A 2009 AIP Conf. Proc. Ser. 203 1099
[15]Wang S, Wu Z C, Tang X J, Sun Y W and Yi Z 2016 Acta Phys. Sin. 65 025201 (in Chinese)
Related articles from Frontiers Journals
[1] Wei Liu, Zhen-Yu Tan, C. Champion. A New Simulation of Track Structure of Low-Energy Electrons in Liquid Water: Considering the Condensed-Phase Effect on Electron Elastic Scattering[J]. Chin. Phys. Lett., 2016, 33(09): 067901
[2] ZHANG Hai-Bo**,LI Wei-Qin,CAO Meng. Leakage Current Simulation of Insulating Thin Film Irradiated by a Nonpenetrating Electron Beam[J]. Chin. Phys. Lett., 2012, 29(4): 067901
[3] JIANG Ding-Ju, TAN Zhen-Yu. A Monte Carlo Study of Low-Energy Electron Transport in Liquid Water: Influence of the Rutherford Formula and the Mott Model[J]. Chin. Phys. Lett., 2010, 27(3): 067901
[4] SHAN Li, CHENG Ming, LIU Kai-Xin, LIU Wei-Fu, CHEN Shi-Yang. New Discrete Element Models for Three-Dimensional Impact Problems[J]. Chin. Phys. Lett., 2009, 26(12): 067901
[5] HE Qing-Fang, XU Zheng, TENG Feng, LIU De-Ang, XU Xu-Rong. Improvements of the Analytical Model of Monte Carlo[J]. Chin. Phys. Lett., 2006, 23(3): 067901
[6] TAN Zhen-Yu, XIA Yue-Yuan, ZHAO Ming-Wen, LIU Xiang-Dong, HUANG Bo-Da, LI Feng, JI Yan-Ju. Monte Carlo Simulation on Energy Deposition of Low-Energy Electrons in Liquid Water[J]. Chin. Phys. Lett., 2005, 22(1): 067901
Viewed
Full text


Abstract