Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 067501    DOI: 10.1088/0256-307X/34/6/067501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Synchrotron X-Ray Diffraction Studies on the New Generation Ferromagnetic Semiconductor Li(Zn,Mn)As under High Pressure
Fei Sun1,2, Cong Xu3, Shuang Yu1,2, Bi-Juan Chen1,2, Guo-Qiang Zhao1,2, Zheng Deng1**, Wen-Ge Yang3,4**, Chang-Qing Jin1,2,5**
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
3Center for High Pressure Science and Technology Advanced Research, Shanghai 201203
4High Pressure Synergetic Consortium, Geophysical Laboratory, Carnegie Institution of Washington, Argonne 60439, USA
5Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Fei Sun, Cong Xu, Shuang Yu et al  2017 Chin. Phys. Lett. 34 067501
Download: PDF(937KB)   PDF(mobile)(923KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The pressure effect on the crystalline structure of the I–II–V semiconductor Li(Zn,Mn)As ferromagnet is studied using in situ high-pressure x-ray diffraction and diamond anvil cell techniques. A phase transition starting at $\sim$11.6 GPa is found. The space group of the high-pressure new phase is proposed as $Pmca$. Fitting with the Birch–Murnaghan equation of state, the bulk modulus $B_{0}$ and its pressure derivative $B'_0$ of the ambient pressure structure with space group of $F\bar{4}3m$ are $B_{0}=75.4$ GPa and $B'_0=4.3$, respectively.
Received: 14 March 2017      Published: 23 May 2017
PACS:  75.50.Pp (Magnetic semiconductors)  
  61.05.cp (X-ray diffraction)  
  64.60.-i (General studies of phase transitions)  
Fund: Supported by the National Natural Science Foundation and the Ministry of Science and Technology of China, the National Natural Science Foundation of China under Grant No U1530402, the U.S. Department of Energy of Office of Science under Grant No DE-AC02-06CH11357, the DOE-NNSA under Grant No DE-NA0001974, the DOE-BES under Grant No DE-FG02-99ER45775, and the Instrumentation Funding of National Science Foundation.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/067501       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/067501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fei Sun
Cong Xu
Shuang Yu
Bi-Juan Chen
Guo-Qiang Zhao
Zheng Deng
Wen-Ge Yang
Chang-Qing Jin
[1]Ohno H et al 1996 Appl. Phys. Lett. 69 363
[2]Ohno H 1998 Science 281 951
[3]Zutic I et al 2004 Rev. Mod. Phys. 76 323
[4]Sawicki M et al 2010 Nat. Phys. 6 22
[5]Dietl T 2010 Nat. Mater. 9 965
[6]Munekata H et al 1993 Appl. Phys. Lett. 63 2929
[7]Hayashi T et al 2001 Appl. Phys. Lett. 78 1691
[8]Hayashi T, Tanaka M, Seto K et al 1997 Appl. Phys. Lett. 71 1825
[9]Samarth N 2012 Nat. Mater. 11 360
[10]Shimizu H, Hayashi T, Nishinaga T et al 1999 Appl. Phys. Lett. 74 398
[11]Masek J, Kudrnovsky J, Maca F et al 2007 Phys. Rev. Lett. 98 067202
[12]Zhao K, Deng Z, Wang X C et al 2013 Nat. Commun. 4 1442
[13]Zhao K, Chen B, Zhao G Q et al 2014 Chin. Sci. Bull. 59 2524
[14]Hirohata A, Sukegawa H, Yanagihara H et al 2015 IEEE Trans. Magn. 51 1
[15]Frandsen B A, Gong Z, Terban M W et al 2016 Phys. Rev. B 94 094102
[16]Glasbrenner J K, Zutic I and Mazin I I 2014 Phys. Rev. B 90 140403
[17]Bacewicz R and Ciszek T F 1988 Appl. Phys. Lett. 52 1150
[18]Kuriyama K and Nakamura F 1987 Phys. Rev. B 36 4439
[19]Kuriyama K, Kato T and Kawada K 1994 Phys. Rev. B 49 11452
[20]Deng Z, Jin C Q, Liu Q Q et al 2011 Nat. Commun. 2 422
[21]Szwacki N G, Majewski J A and Dietl T 2015 Phys. Rev. B 91 184409
[22]Dietl T and Ohno H 2014 Rev. Mod. Phys. 86 187
[23]Sun F, Li N N, Chen B J et al 2016 Phys. Rev. B 93 224403
[24]Sun F, Zhao G Q, Escanhoela Jr C A et al 2017 Phys. Rev. B 95 94412
[25]Larson A C and Dreele R B V 2004 Los Alamos Natl. Laboratory Report No. LAUR 86 2004
[26]Heyd J and Scuseria G E 2004 J. Chem. Phys. 121 1187
[27]Weir S T, Vohra Y K, Vanderborgh C A et al 1989 Phys. Rev. B 39 1280
[28]Besson J M, Itie J P, Polian A et al 1991 Phys. Rev. B 44 4214
[29]Yu P Y 2011 Phys. Status Solidi B 248 1077
[30]Csontos M, Mihaly G, Janko B et al 2005 Nat. Mater. 4 447
[31]Csontos M, Mihaly G, Janko B et al 2004 Phys. Status Solidi C 1 3571
[32]Gryglas-Borysiewicz M, Kwiatkowski A, Baj M et al 2010 Phys. Rev. B 82 153204
Related articles from Frontiers Journals
[1] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 067501
[2] Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou, and Jijun Zhao . Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation[J]. Chin. Phys. Lett., 2020, 37(10): 067501
[3] Qixun Guo, Yu Wu, Longxiang Xu, Yan Gong, Yunbo Ou, Yang Liu, Leilei Li, Yu Yan, Gang Han, Dongwei Wang, Lihua Wang, Shibing Long, Bowei Zhang, Xun Cao, Shanwu Yang, Xuemin Wang, Yizhong Huang, Tao Liu, Guanghua Yu, Ke He, Jiao Teng. Electrically Tunable Wafer-Sized Three-Dimensional Topological Insulator Thin Films Grown by Magnetron Sputtering[J]. Chin. Phys. Lett., 2020, 37(5): 067501
[4] Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu. Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite[J]. Chin. Phys. Lett., 2020, 37(2): 067501
[5] Baoyue Li, Yifeng Cao, Lin Xu, Guang Yang, Zhi Ma, Miao Ye, Tianxing Ma. Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(6): 067501
[6] Chunkai Chan, Xiaodong Zhang, Yiou Zhang, Kinfai Tse, Bei Deng, Jingzhao Zhang, Junyi Zhu. Stepping Stone Mechanism: Carrier-Free Long-Range Magnetism Mediated by Magnetized Cation States in Quintuple Layer[J]. Chin. Phys. Lett., 2018, 35(1): 067501
[7] Chao-Jing Lin, You-Guo Shi, Yong-Qing Li. Analytical Descriptions of Magnetic Properties and Magnetoresistance in n-Type HgCr$_2$Se$_4$[J]. Chin. Phys. Lett., 2016, 33(07): 067501
[8] LI Hang, ZHANG Xin-Hui. Evaluation of the Ultrafast Thermal Manipulation of Magnetization Precession in Ferromagnetic Semiconductor (Ga,Mn)As[J]. Chin. Phys. Lett., 2015, 32(06): 067501
[9] PAN Dong, WANG Si-Liang, WANG Hai-Long, YU Xue-Zhe, WANG Xiao-Lei, ZHAO Jian-Hua. Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(07): 067501
[10] XIA Yu-Qian, SUN Lei, XU Hao, HAN Jing-Wen, ZHANG Yi-Bo, WANG Yi, ZHANG Sheng-Dong. Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(2): 067501
[11] Hassen Dakhlaoui. Quantum Size and Doping Concentration Effects on the Current-Voltage Characteristics in GaN Resonant Tunneling Diodes[J]. Chin. Phys. Lett., 2013, 30(7): 067501
[12] SUN Shao-Hua, WU Ping, XING Peng-Fei . Room-Temperature d0 Ferromagnetism in Nitrogen-Doped In2O3 Films[J]. Chin. Phys. Lett., 2013, 30(7): 067501
[13] JIANG Feng-Xian, XI Shi-Bo, MA Rong-Rong, QIN Xiu-Fang, FAN Xiao-Chen, ZHANG Min-Gang, ZHOU Jun-Qi, XU Xiao-Hong. Room-Temperature Ferromagnetism in Fe/Sn-Codoped In2O3 Powders and Thin Films[J]. Chin. Phys. Lett., 2013, 30(4): 067501
[14] CHEN Zhi-Yuan, CHEN Zhi-Quan, PAN Rui-Kun, WANG Shao-Jie. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study[J]. Chin. Phys. Lett., 2013, 30(2): 067501
[15] XI Shi-Bo, CUI Ming-Qi, QIN Xiu-Fang, XU Xiao-Hong, XU Wei, ZHENG Lei, ZHOU Jing, LIU Li-Juan, YANG Dong-Liang, GUO Zhi-Ying. Origin of Ferromagnetism in Zn1?xCoxO Thin Films: Evidences Provided by Hard and Soft X-Ray Absorption Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(12): 067501
Viewed
Full text


Abstract