Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 107801    DOI: 10.1088/0256-307X/34/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface
Ren-Xia Ning1**, Zheng Jiao1, Jie Bao2
1School of Information Engineering, Huangshan University, Huangshan 245041
2School of Mechanical and Electrical Engineering, Huangshan University, Huangshan 245041
Cite this article:   
Ren-Xia Ning, Zheng Jiao, Jie Bao 2017 Chin. Phys. Lett. 34 107801
Download: PDF(1078KB)   PDF(mobile)(1074KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A tunable absorber, composed of a graphene ribbon on two layers of TiO$_{2}$-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite structure varies with the geometrical parameters of the structure and the physical parameters of graphene at mid-infrared frequencies. The numerical simulation shows that a near-perfect absorption with single and dual bands can be achieved in a certain frequency range. We also analyze the electric and surface current distributions to study the dual-band absorber. The results show that the absorber can be tuned by the chemical potential and electron–phonon relaxation time of graphene, and electromagnetically induced transparency phenomenon can be obtained. The results of this study may be beneficial in the fields of infrared communication, perfect absorbers, sensors and filters.
Received: 24 June 2017      Published: 27 September 2017
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  81.05.ue (Graphene)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Supported by the Program for the University Excellent Young Talents under Grant No gxyq2017074, the Anhui Key Research and Development Plan under Grant No 1704e1002208, and the Natural Science Research Project of Anhui Province Education Department under Grant No KJ2017A396.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/107801       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/107801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ren-Xia Ning
Zheng Jiao
Jie Bao
[1]Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y and Zhou L 2015 Phys. Rev. X 5 041027
[2]Hu X, Wen L, Song S and Chen Q 2015 Nanotechnology 26 505203
[3]Wu K, Huang Y, Wanghuang T, Chen W and Wen G 2015 Appl. Opt. 54 299
[4]Huang X, Hu Z, Aqeeli M, Zhang X and Alburaikan A 2015 IET Microwaves, Antennas & Propagation 9 307
[5]Chen P Y, Soric J, Padooru Y R, Bernety H M, Yakovlev A B and Alù A 2013 New J. Phys. 15 123029
[6]Bernety H M and Yakovlev A B 2015 J. Phys.: Condens. Matter 27 185304
[7]Mousavi S H, Kholmanov I, Alici K B, Purtseladze D, Arju N, Tatar K, Fozdar D Y, Suk J W, Hao Y, Khanikaev A B, Ruoff R S and Shvets G 2013 Nano Lett. 13 1111
[8]Fallahi A and Perruisseau-Carrier J 2012 Phys. Rev. B 86 195408
[9]Yatooshi T, Ishikawa A and Tsuruta K 2015 Appl. Phys. Lett. 107 053105
[10]Li Z, Yao K, Xia F, Shen S, Tian J and Liu Y 2015 Sci. Rep. 5 12423
[11]Fan Y, Shen N H, Koschny T and Soukoulis C M 2015 ACS Photon. 2 151
[12]Faraji M, Moravvej-Farshi M K and Yousefi L 2015 Opt. Commun. 355 352
[13]He X 2015 Carbon 82 229
[14]Lu H, Cumming B P and Gu M 2015 Opt. Lett. 40 3647
[15]Deng X H, Liu J T, Yuan J, Wang T B and Liu N H 2014 Opt. Express 22 30177
[16]Ding G W, Liu S B, Zhang H F, Kong X K, Li H M, Li B X, Liu S Y and Li H 2015 Chin. Phys. B 24 118103
[17]Mikhailov S and Ziegler K 2007 Phys. Rev. Lett. 99 016803
[18]Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004
[19]Vakil A and Engheta N 2011 Science 332 1291
[20]Frederikse H P R 1998 Handbook Chem. Phys. 1999 12
[21]Sellier A, Teperik T V and André de L 2013 Opt. Express 21 A997
[22]Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Cumming D R 2011 Opt. Lett. 36 945
[23]Malard L M, Mak K F, Neto A H, Peres C N and Heinz T F 2013 New J. Phys. 15 015009
[24]Ding J, Arigong B, Ren H, Zhou M, Shao J, Lu M, Chai Y, Lin Y and Zhang H 2015 Sci. Rep. 4 6128
[25]He X J, Wang J M, Tian X H, Jiang J X and Geng Z X 2013 Opt. Commun. 291 371
[26]Wang Z, Zhou M, Lin X, Liu H, Wang H, Yu F, Lin S, Li E and Chen H 2014 Opt. Commun. 329 76
[27]Meng L, Zhao D, Li Q and Qiu M 2013 Opt. Express 21 A111
[28]Zhu Z H, Guo C C, Zhang J F, Liu K, Yuan X D and Qin S Q 2015 Appl. Phys. Express 8 015102
[29]Amin M, Farhat M and Bagci H 2013 Opt. Express 21 29938
[30]Yang C, Luo Y, Guo J, Pu Y, He D, Jiang Y, Xu J and Liu Z 2016 Opt. Express 24 16913
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 107801
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 107801
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 107801
[4] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 107801
[5] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 107801
[6] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 107801
[7] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 107801
[8] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 107801
[9] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 107801
[10] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 107801
[11] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 107801
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 107801
[13] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 107801
[14] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 107801
[15] Kai-Lun Zhang, Zhi-Ling Hou, Ling-Bao Kong, Hui-Min Fang, Ke-Tao Zhan. Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials[J]. Chin. Phys. Lett., 2017, 34(9): 107801
Viewed
Full text


Abstract