Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 108101    DOI: 10.1088/0256-307X/34/10/108101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Strain Engineering for Germanium-on-Insulator Mobility Enhancement with Phase Change Liner Stressors
Yan-Yan Zhang1, Ran Cheng1, Shuang Xie2, Shun Xu1, Xiao Yu1, Rui Zhang1, Yi Zhao1,2**
1College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027
2State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
Cite this article:   
Yan-Yan Zhang, Ran Cheng, Shuang Xie et al  2017 Chin. Phys. Lett. 34 108101
Download: PDF(680KB)   PDF(mobile)(678KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the strain in various Ge-on-insulator (GeOI) micro-structures induced by three phase-change materials (PCMs) (Ge$_{2}$Sb$_{2}$Te$_{5}$, Sb$_{2}$Te$_{3}$, GeTe) deposited. The PCMs could change the phase from amorphous state to polycrystalline state with a low temperature thermal annealing, resulting in an intrinsic contraction in the PCM films. Raman spectroscopy analysis is performed to compare the strain induced in the GeOI micro-structures by various PCMs. By comparison, Sb$_{2}$Te$_{3}$ could induce the largest amount of tensile strain in the GeOI micro-structures after the low temperature annealing. Based on the strain calculated from the Raman peak shifts, finite element numerical simulation is performed to calculate the strain-induced electron mobility enhancement for Ge n-MOSFETs with PCM liner stressors. With the adoption of Sb$_{2}$Te$_{3}$ liner stressor, 22% electron mobility enhancement at $N_{\rm inv}=1\times10^{13}$ cm$^{-2}$ could be achieved, suggesting that PCM especially Sb$_{2}$Te$_{3}$ liner stressor is a promising technique for the performance enhancement of Ge MOSFETs.
Received: 07 June 2017      Published: 27 September 2017
PACS:  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
  73.50.-h (Electronic transport phenomena in thin films)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61376097, 61504120, and U1609213, the Zhejiang Provincial Natural Science Foundation of China under Grant No LR14F040001, and the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20130091110025.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/108101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/108101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Yan Zhang
Ran Cheng
Shuang Xie
Shun Xu
Xiao Yu
Rui Zhang
Yi Zhao
[1]Yang Y J, Ho W S and Huang C F 2007 Appl. Phys. Lett. 91 102103
[2]Schaffler F 1997 Semicond. Sci. Technol. 12 1515
[3]Maiti C K, Bera L K and Chattopadhyay S 1998 Semicond. Sci. Technol. 13 1225
[4]Sawano K, Toyama K, Masutomi R et al 2009 Appl. Phys. Lett. 95 122109
[5]Lee M L, Fitzgerald E A, Bulsara M T et al 2005 J. Appl. Phys. 97 011101
[6]Kavalieros J, Doyle B, Datta S et al 2006 Symp. VLSI Technol. Dig. Tech. Pap. p 50
[7]Collaert N, Rooyackers R and Clemente F et al 2006 Symp. VLSI. Technol. Dig. Tech. Pap. p 52
[8]Liow T Y, Tan K M, Lee R et al 2006 Symp. VLSI. Technol. Dig. Tech. Pap. p 56
[9]Tan K M, Yang M C, Liow T Y et al 2009 IEEE Trans. Electron Devices 56 1277
[10]Smith C, Parthasarathy S, Coss B E et al 2010 Symp. VLSI. Technol. Dig. Tech. Pap. p 156
[11]Ding Y J, Cheng R, Koh S M et al 2011 Tech. Dig. Int. Elec. Dev. Meet. p 833
[12]Cheng R, Ding Y J, Koh S M et al 2013 Symp. VLSI. Technol. Dig. Tech. Pap. 93
[13]Zhang H, Liu C X, Qi X L et al 2009 Nat. Phys. 5 438
[14]Pedersen T P L, Kalb J, Njoroge W K et al 2001 Appl. Phys. Lett. 79 3597
[15]Banl S K and Chopra K L 1970 J. Appl. Phys. 41 2196
[16]Shin S, Kim K M, Song J et al 2011 IEEE Trans. Electron Devices 58 782
[17]Lu Q, Zhang H Y, Cheng Y et al 2016 Chin. Phys. B 25 026401
[18]http://www.ioffe.ru/SVA/NSM/Semicond/Ge/mechanic.html
[19]Yeo Y C and Sun J 2005 Appl. Phys. Lett. 86 023103
[20]Benabbas T, Androussi Y and Lefebvre A 1999 J. Appl. Phys. 86 1945
[21]Donetti L, Gámiz F, Rodriguez N et al 2010 Solid-State Electron. 54 191
[22]Wu W, Li X, Sun J et al 2015 IEEE Trans. Electron Devices 62 1136
[23]Tahini H, Chroneos A, Grimes R W et al 2012 J. Phys.: Condens. Matter 24 195802
[24]Takagi S, Hoyt J L, Welser J J et al 1996 J. Appl. Phys. 80 1567
Related articles from Frontiers Journals
[1] Li Lei, Qi-Qi Tang, Feng Zhang, Shan Liu, Bin-Bin Wu, Chun-Yin Zhou. Evidence for a New Extended Solid of Nitrogen *[J]. Chin. Phys. Lett., 0, (): 108101
[2] Li Lei, Qi-Qi Tang, Feng Zhang, Shan Liu, Bin-Bin Wu, Chun-Yin Zhou. Evidence for a New Extended Solid of Nitrogen[J]. Chin. Phys. Lett., 2020, 37(6): 108101
[3] ZHUO Long-Chao, LIANG Shu-Hua, ZHANG Tao. The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins[J]. Chin. Phys. Lett., 2015, 32(07): 108101
[4] JIANG Hong-Xiang, and ZHAO Jiu-Zhou. Effect Mechanism of a Direct Current on the Solidification of Immiscible Alloys[J]. Chin. Phys. Lett., 2012, 29(8): 108101
[5] CAI Ying-Xiang, XU Rui. First-Principles Study of the γ Angle Deformation Path in the Wurtzite-to-Rocksalt Phase Transition in Aluminum Nitride[J]. Chin. Phys. Lett., 2010, 27(9): 108101
[6] LEI Ming-Kai, WANG Xing-Jun. Thermodynamical Phase Equilibrium of Iron Nitrides at Low Temperatures[J]. Chin. Phys. Lett., 2002, 19(11): 108101
[7] ZHANG Tie-chen, YU San, LI Dong-mei, GUO Wei-li, GAO Chun-xiao, ZOU Guang-tian. Wurtzite Boron Nitride Crystal Growth in the Region of Cubic Boron Nitride Crystal Synthesizing[J]. Chin. Phys. Lett., 1998, 15(1): 108101
[8] TAN Qi. Ordering and Reordering of Nanophase FeAl Intermetallics Synthesized by Mechanical Alloying[J]. Chin. Phys. Lett., 1996, 13(11): 108101
[9] YAO Yushu, JIN Changqing, WU Bingqing, WANG Wenkui, ZHAO Zhongxian. Formation of Superconducting Phases in Electron-Doped Nd1.85Ce0.15CuO4-y[J]. Chin. Phys. Lett., 1993, 10(1): 108101
[10] HAN Lijun*, JIANG Xingliu. Transformation of Graphite to Diamond by Bombardment of Intense Pulsed Electron Beams[J]. Chin. Phys. Lett., 1992, 9(4): 108101
Viewed
Full text


Abstract