CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Strain Engineering for Germanium-on-Insulator Mobility Enhancement with Phase Change Liner Stressors |
Yan-Yan Zhang1, Ran Cheng1, Shuang Xie2, Shun Xu1, Xiao Yu1, Rui Zhang1, Yi Zhao1,2** |
1College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027 2State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
|
|
Cite this article: |
Yan-Yan Zhang, Ran Cheng, Shuang Xie et al 2017 Chin. Phys. Lett. 34 108101 |
|
|
Abstract We investigate the strain in various Ge-on-insulator (GeOI) micro-structures induced by three phase-change materials (PCMs) (Ge$_{2}$Sb$_{2}$Te$_{5}$, Sb$_{2}$Te$_{3}$, GeTe) deposited. The PCMs could change the phase from amorphous state to polycrystalline state with a low temperature thermal annealing, resulting in an intrinsic contraction in the PCM films. Raman spectroscopy analysis is performed to compare the strain induced in the GeOI micro-structures by various PCMs. By comparison, Sb$_{2}$Te$_{3}$ could induce the largest amount of tensile strain in the GeOI micro-structures after the low temperature annealing. Based on the strain calculated from the Raman peak shifts, finite element numerical simulation is performed to calculate the strain-induced electron mobility enhancement for Ge n-MOSFETs with PCM liner stressors. With the adoption of Sb$_{2}$Te$_{3}$ liner stressor, 22% electron mobility enhancement at $N_{\rm inv}=1\times10^{13}$ cm$^{-2}$ could be achieved, suggesting that PCM especially Sb$_{2}$Te$_{3}$ liner stressor is a promising technique for the performance enhancement of Ge MOSFETs.
|
|
Received: 07 June 2017
Published: 27 September 2017
|
|
PACS: |
81.30.-t
|
(Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)
|
|
81.40.-z
|
(Treatment of materials and its effects on microstructure, nanostructure, And properties)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61376097, 61504120, and U1609213, the Zhejiang Provincial Natural Science Foundation of China under Grant No LR14F040001, and the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20130091110025. |
|
|
[1] | Yang Y J, Ho W S and Huang C F 2007 Appl. Phys. Lett. 91 102103 | [2] | Schaffler F 1997 Semicond. Sci. Technol. 12 1515 | [3] | Maiti C K, Bera L K and Chattopadhyay S 1998 Semicond. Sci. Technol. 13 1225 | [4] | Sawano K, Toyama K, Masutomi R et al 2009 Appl. Phys. Lett. 95 122109 | [5] | Lee M L, Fitzgerald E A, Bulsara M T et al 2005 J. Appl. Phys. 97 011101 | [6] | Kavalieros J, Doyle B, Datta S et al 2006 Symp. VLSI Technol. Dig. Tech. Pap. p 50 | [7] | Collaert N, Rooyackers R and Clemente F et al 2006 Symp. VLSI. Technol. Dig. Tech. Pap. p 52 | [8] | Liow T Y, Tan K M, Lee R et al 2006 Symp. VLSI. Technol. Dig. Tech. Pap. p 56 | [9] | Tan K M, Yang M C, Liow T Y et al 2009 IEEE Trans. Electron Devices 56 1277 | [10] | Smith C, Parthasarathy S, Coss B E et al 2010 Symp. VLSI. Technol. Dig. Tech. Pap. p 156 | [11] | Ding Y J, Cheng R, Koh S M et al 2011 Tech. Dig. Int. Elec. Dev. Meet. p 833 | [12] | Cheng R, Ding Y J, Koh S M et al 2013 Symp. VLSI. Technol. Dig. Tech. Pap. 93 | [13] | Zhang H, Liu C X, Qi X L et al 2009 Nat. Phys. 5 438 | [14] | Pedersen T P L, Kalb J, Njoroge W K et al 2001 Appl. Phys. Lett. 79 3597 | [15] | Banl S K and Chopra K L 1970 J. Appl. Phys. 41 2196 | [16] | Shin S, Kim K M, Song J et al 2011 IEEE Trans. Electron Devices 58 782 | [17] | Lu Q, Zhang H Y, Cheng Y et al 2016 Chin. Phys. B 25 026401 | [18] | http://www.ioffe.ru/SVA/NSM/Semicond/Ge/mechanic.html | [19] | Yeo Y C and Sun J 2005 Appl. Phys. Lett. 86 023103 | [20] | Benabbas T, Androussi Y and Lefebvre A 1999 J. Appl. Phys. 86 1945 | [21] | Donetti L, Gámiz F, Rodriguez N et al 2010 Solid-State Electron. 54 191 | [22] | Wu W, Li X, Sun J et al 2015 IEEE Trans. Electron Devices 62 1136 | [23] | Tahini H, Chroneos A, Grimes R W et al 2012 J. Phys.: Condens. Matter 24 195802 | [24] | Takagi S, Hoyt J L, Welser J J et al 1996 J. Appl. Phys. 80 1567 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|