CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
High-Pressure Preparation of High-Density Cu$_{2}$ZnSnS$_{4}$ Materials |
Yi-Ming Li1,2, Li-Xia Qiu1, Zhan-Hui Ding1**, Yong-Feng Li1, Bin Yao1,2**, Zhen-Yu Xiao1, Pin-Wen Zhu1 |
1State Key Laboratory of Superhard Material and College of Physics, Jilin University, Changchun 130012 2Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012
|
|
Cite this article: |
Yi-Ming Li, Li-Xia Qiu, Zhan-Hui Ding et al 2016 Chin. Phys. Lett. 33 076101 |
|
|
Abstract High-density Cu$_{2}$ZnSnS$_{4 }$ (CZTS) materials are prepared via the mechanical alloying and high pressure sintering method using Cu$_{2}$S, ZnS and SnS$_{2}$ as the raw materials. The morphological, structural, compositional and electrical properties of the materials are investigated by using x-ray diffraction, scanning electron microscopy, and energy dispersive x-ray spectroscopy, as well as by the Raman scattering and the Hall Effect measurements. The CZTS synthesized under 5 GPa and 800$^\circ\!$C shows a p-type conductivity, with a resistivity of $9.69\times10^{-2}$ $\Omega \cdot$cm and a carrier concentration of $1.45\times10^{20}$ cm$^{-3}$. It is contributed to by the large grains in the materials reducing the grain boundaries, thus effectively reducing the recombination of the charge carriers.
|
|
Received: 09 March 2016
Published: 01 August 2016
|
|
PACS: |
61.82.Fk
|
(Semiconductors)
|
|
81.40.Vw
|
(Pressure treatment)
|
|
87.64.Bx
|
(Electron, neutron and x-ray diffraction and scattering)
|
|
|
|
|
[1] | Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T and Miyajima S 2001 Sol. Energy Mater. Sol. Cells 65 141 | [2] | Tang D, Wang Q L, Liu F Y, Zhao L B, Han Z L, Sun K W, Lai Y Q, Li J and Liu Y X 2013 Surf. Coat. Technol. 232 53 | [3] | Chen S Y, Gong X G, Aron W and Wei S H 2011 Physics 40 248 | [4] | Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W S, Araki H, Oishi K and Katagiri H 2007 Thin Solid Films 515 5997 | [5] | Mitzi D B, Gunawan O, Todorov T K, Wang K and Guha S 2011 Sol. Energy Mater. Sol. Cells 95 1421 | [6] | Abelenda A, Sánchez M, Ribeiro G M, Fernandes P A, SaloméP M P, da Cunha A F, Leit?o J P, da Silva M I N and González J C 2015 Sol. Energy Mater. Sol. Cells 137 164 | [7] | Tanaka K, Kato M and Uchiki H 2014 J. Alloys Compd. 616 492 | [8] | Wozny S, Wang K and Zhou W 2013 J. Mater. Chem. A 1 15517 | [9] | Li Y, Yuan T, Jiang L, Su Z and Liu F 2014 J. Alloys Compd. 610 331 | [10] | Tanaka T, Kawasaki D, Nishio M, Guo Q and Ogawa H 2006 Phys. Status Solidi C 3 2844 | [11] | Araki H, Mikaduki A, Kubo Y, Sato T, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Oishi K and Takeuchi A 2008 Thin Solid Films 517 1457 | [12] | He J, Sun Lin, Zhang K Z, Wang W J, Jiang J C, Chen Y, Yang P X and Chu J H 2013 Appl. Surf. Sci. 264 133 | [13] | Azimi H, Hou Y and Brabec C J 2014 Energy Environ. Sci. 7 1829 | [14] | Katagiri H 2012 The 3rd International Conference on Photonics p 345 | [15] | Ou K L, Fan J C, Chen J K, Huang C C, Chen L Y, Ho J H and Chang J Y 2012 J. Mater. Chem. 22 14667 | [16] | Todorov T and Mitzi D B 2010 Eur. J. Inorg. Chem. 2010 17 | [17] | Su Z H, Sun K W, Han Z L, Cui H T, Liu F Y, Lai Y Q, Li J, Hao X J, Liu Y X and Green M A 2014 J. Mater. Chem. A 2 500 | [18] | Traji? J, Kosti? R, Rom?evi? N, Rom?evi? M, Mitri? M, Lazovi? V, Bala? P and Stojanovi? D 2015 J. Alloys Compd. 637 401 | [19] | Wang C R, Tang K B, Yang Q and Qian Y T 2002 Chem. Phys. Lett. 357 371 | [20] | Pani B and Singh U P 2013 J. Renewable Sustainable Energy 5 053131 | [21] | Kala S, Kaur H, Rastogi, Singh V N and Senguttuvan T D 2016 J. Alloys Compd. 658 324 | [22] | Shin S W, Pawar S M, Park C Y, Yun J H, Moon J H, Kim J H and Lee J Y 2011 Sol. Energy Mater. Sol. Cells 95 3202 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|