Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 070303    DOI: 10.1088/0256-307X/33/7/070303
GENERAL |
Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction
Sheng-Li Zhang1**, Jian-Sheng Guo1, Jian-Hong Shi1, Xu-Bo Zou2
1The PLA Information Engineering University, Zhengzhou 450004
2Key Laboratory of Quantum information, University of Science and Technology of China, Hefei 230026
Cite this article:   
Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi et al  2016 Chin. Phys. Lett. 33 070303
Download: PDF(737KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Entanglement distillation is a probabilistic quantum operation which tries to repair entanglement after environment-induced decoherence. All known distillations of continuous variable entanglement always assume that the entanglement is distributed via a standard attenuating channel with fixed photon loss rate, which is fairly idealized without many realistic effects taken into account. Here we investigate the problem of distillation of entanglement transmitted via atmospheric channel, with transmittance being highly probabilistic and unfixed. Two typical distillation schemes, i.e., single-sided photon subtraction and bi-sided photon subtraction, are investigated.
Received: 10 March 2016      Published: 01 August 2016
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/070303       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/070303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng-Li Zhang
Jian-Sheng Guo
Jian-Hong Shi
Xu-Bo Zou
[1]Eisert J, Scheel S and Plenio M B 2002 Phys. Rev. Lett. 89 137903
[2]Fiurá?ek J 2002 Phys. Rev. Lett. 89 137904
[3]Giedke G and Cirac J I 2002 Phys. Rev. A 66 032316
[4]Opatrny T, Kurizki G and Welsch D G 2000 Phys. Rev. A 61 032302
[5]Olivares S, Paris M G A and Bonifacio R 2003 Phys. Rev. A 67 032314
[6]Kitagawa A, Takeoka M, Sasaki M and Chefles A 2006 Phys. Rev. A 73 042310
[7]Vidal G and Werner R 2002 Phys. Rev. A 65 032314
[8]Zhang S and van Loock P 2010 Phys. Rev. A 82 062316
[9]Zhang S L, Dong Y L, Zou X B, Shi B S and Guo G C, 2013 Phys. Rev. A 88 032324
[10]Zhang S L and Loock P 2011 Phys. Rev. A 84 062309
[11]Fiurá?ek J 2011 Phys. Rev. A 84 012335
[12]Takahashi H, Neergaard-Nielsen J S, Takeuchi M, Takeoka M, Hayasaka K, Furusawa A and Sasaki M 2010 Nat. Photon. 4 178
[13]Peuntinger C, Heim B, Müler C R, Gabriel C, Marquardt C and Leuchs G 2014 Phys. Rev. Lett. 113 060502
[14]Diament P and Teich M C 1970 J. Opt. Soc. Am. 60 1489
[15]Pe?ina J 1972 Czech. J. Phys. 22 1075
[16]Pe?ina J, Pe?inova V, Teich M C and Diament P 1973 Phys. Rev. A 7 1732
[17]Shapiro J H, Capron B A and Harney R C 1981 Appl. Opt. 20 3292
[18]Yu D, Semenov A A and Vogel W 2012 Phys. Rev. Lett. 108 220501
[19]Jakeman E and Ridley K D 2006 Modeling Fluctuations in Scattered Waves (New York: Taylor & Francis Group)
Related articles from Frontiers Journals
[1] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 070303
[2] ZHANG Sheng-Li, WANG-Kun, GUO Jian-Sheng, SHI Jian-Hong. Quantum Illumination with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2015, 32(09): 070303
[3] GAN Shu, HE Xing-Dao, LIU Bin, FENG Cui-Di. Effect of Quantum Coins on Two-Particle Quantum Walks[J]. Chin. Phys. Lett., 2015, 32(08): 070303
[4] LI Xin, LI Zhong-Fang, SHI Zhi-Long, WANG Xiao-Qin. Characteristics of Entanglement Wave in Two Parallel Spin Chains[J]. Chin. Phys. Lett., 2014, 31(06): 070303
[5] SHANG Ru-Nan, LI Hai-Ou, CAO Gang, YU Guo-Dong, XIAO Ming, TU Tao, GUO Guo-Ping. Probing Energy Spectrum of Quadruple Quantum Dots with Microwave Field[J]. Chin. Phys. Lett., 2014, 31(05): 070303
[6] ZHAO Jie, LI Wen-Dong, GU Yong-Jian. Deterministic Three-Copy Entanglement Concentration of Photons through Direct Sum Extension and Auxiliary Degrees of Freedom[J]. Chin. Phys. Lett., 2013, 30(7): 070303
[7] ZHAO Jun-Jun, GUO Xiao-Min, WANG Xu-Yang, WANG Ning, LI Yong-Min, PENG Kun-Chi . Continuous Variable Entanglement Distribution for Long-Distance Quantum Communication[J]. Chin. Phys. Lett., 2013, 30(6): 070303
[8] ZHANG Dan, ZHENG Qiang. Effect of Phase Noise on the Stationary Entanglement of an Optomechanical System with Kerr Medium[J]. Chin. Phys. Lett., 2013, 30(2): 070303
[9] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 070303
[10] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 070303
[11] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 070303
[12] Salman Khan**, M. Khalid Khan . Quantum Stackelberg Duopoly in a Noninertial Frame[J]. Chin. Phys. Lett., 2011, 28(7): 070303
[13] LIAO Qing-Hong, FANG Guang-Yu, WANG Ji-Cheng, AHMAD Muhammad Ashfaq, LIU Shu-Tian** . Control of the Entanglement between Two Josephson Charge Qubits[J]. Chin. Phys. Lett., 2011, 28(6): 070303
[14] ZHANG Miao, JIA Huan-Yu, WEI Lian-Fu, ** . Entangling a Series of Trapped Ions by Moving Cavity Bus[J]. Chin. Phys. Lett., 2011, 28(6): 070303
[15] ZHU Zhi-Cheng, TU Tao**, GUO Guo-Ping . Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator[J]. Chin. Phys. Lett., 2011, 28(4): 070303
Viewed
Full text


Abstract