Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 070302    DOI: 10.1088/0256-307X/33/7/070302
GENERAL |
Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics
Jin-Tao Tan1, Yun-Rong Luo1, Zheng Zhou2, Wen-Hua Hai1**
1Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081
2Department of Physics and Mathematics, Hunan Institute of Technology, Hengyang 421002
Cite this article:   
Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou et al  2016 Chin. Phys. Lett. 33 070302
Download: PDF(474KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice. Starting from an unentangled initial state associated with the regular 'island' of classical phase space, it is demonstrated that the quantum resonance leads to entanglement generation, the chaotic parameter region results in the increase of the generation speed, and the symmetries of the initial probability distribution determine the final degree of entanglement. The entangled initial states are associated with the classical 'chaotic sea', which do not affect the final entanglement degree for the same initial symmetry. The results may be useful in engineering quantum dynamics for quantum information processing.
Received: 18 April 2016      Published: 01 August 2016
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  05.45.Ac (Low-dimensional chaos)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/070302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin-Tao Tan
Yun-Rong Luo
Zheng Zhou
Wen-Hua Hai
[1]Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2]Loyd S 1993 Science 261 1569
[3]Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4]Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[5]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Communication (Cambridge: Cambridge University Press)
[6]Tang S Q, Yuan J B, Wang X W and Kuang L M 2015 Chin. Phys. Lett. 32 040303
[7]Song W, Huang Y S, Yang M and Cao Z L 2015 Chin. Phys. Lett. 32 088701
[8]Zhu W T, Ren Q B, Duan L W and Chen Q H 2016 Chin. Phys. Lett. 33 050302
[9]Osenda O and Serra P 2007 Phys. Rev. A 75 042331
Lin Y C, Lin C Y and Ho Y K 2013 Phys. Rev. A 87 022316
[10]Vatasescu M 2013 Phys. Rev. A 88 063415
[11]Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S and Monroe C 2013 Phys. Rev. Lett. 110 203001
[12]Lü X Y, Jing H, Ma J Y and Wu Y 2015 Phys. Rev. Lett. 114 253601
[13]Fratini E and Pilati S 2015 Phys. Rev. A 91 061601(R)
[14]Haake F 1991 Quantum Signature of Chaos (Berlin: Springer)
[15]Chaudhury S, Smith A, Anderson B E, Ghose S and Jessen P S 2009 Nature 461 768
[16]Emerson J, Weinstein Y S, Lloyd S and Cory D G 2002 Phys. Rev. Lett. 89 284102
Xie Q T and Hai W H 2005 Eur. Phys. J. D 33 265
[17]Wang X G, Ghose S, Sanders B C and Hu B 2004 Phys. Rev. E 70 016217
[18]Furuya K, Nemes M C and Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524
[19]Steck D A, Oskay W H and Raizen M G 2001 Science 293 274
Steck D A 2009 Nature 461 736
[20]Hensinger W K, Haffner H, Browaeys A, Heckenberg N R, Helmerson K, McKenzie C, Milburn G J, Phillips W D, Rolston S L, Rubinsztein-Dunlop H and Upcroft B 2001 Nature 412 52
[21]Ma R, Tai M E, Preiss P M, Bakr W S, Simon J and Greiner M 2011 Phys. Rev. Lett. 107 095301
[22]Tan J T, Lu G B, Luo Y L and Hai W H 2014 Chaos 24 043114
[23]Gardiner S A, Cirac J I and Zoller P 1997 Phys. Rev. Lett. 79 4790
[24]Chen Y A, Nascimbene S, Aidelsburger M, Atala M, Trotzky S and Bloch I 2011 Phys. Rev. Lett. 107 210405
[25]Dunlap D H and Kenkre V M 1986 Phys. Rev. B 34 3625
[26]Chen H, Tan J T, Hai K, Zhang X L and Hai W H 2015 Eur. Phys. J. D 69 278
[27]Tan J T, Zou M L, Luo Y L and Hai W H 2016 Chaos 26 063106
[28]Sun Y H, Zhu X and Kuang L M 2005 Chin. Phys. Lett. 22 1833
[29]Liao Q H, Fang G Y, Wang Y Y, Ahmad M A and Liu S T 2010 Chin. Phys. Lett. 27 070304
[30]Vedral V 2002 Rev. Mod. Phys. 74 197
Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[31]Rényi A 1970 Probability Theory (Amsterdam: North-Holland)
[32]Kuhr S, Alt W, Schrader D, Müller M, Gomer V and Meschede D 2001 Science 293 278
Related articles from Frontiers Journals
[1] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 070302
[2] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 070302
[3] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 070302
[4] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 070302
[5] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 070302
[6] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 070302
[7] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 070302
[8] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 070302
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 070302
[10] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 070302
[11] Yong-Gang Tan, Qiang Liu. Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications[J]. Chin. Phys. Lett., 2016, 33(09): 070302
[12] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 070302
[13] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 070302
[14] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 070302
[15] Yong-Gang Tan, Yao-Hua Hu, Hai-Feng Yang. Biased Random Number Generator Based on Bell's Theorem[J]. Chin. Phys. Lett., 2016, 33(03): 070302
Viewed
Full text


Abstract