GENERAL |
|
|
|
|
Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics |
Jin-Tao Tan1, Yun-Rong Luo1, Zheng Zhou2, Wen-Hua Hai1** |
1Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081 2Department of Physics and Mathematics, Hunan Institute of Technology, Hengyang 421002
|
|
Cite this article: |
Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou et al 2016 Chin. Phys. Lett. 33 070302 |
|
|
Abstract We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice. Starting from an unentangled initial state associated with the regular 'island' of classical phase space, it is demonstrated that the quantum resonance leads to entanglement generation, the chaotic parameter region results in the increase of the generation speed, and the symmetries of the initial probability distribution determine the final degree of entanglement. The entangled initial states are associated with the classical 'chaotic sea', which do not affect the final entanglement degree for the same initial symmetry. The results may be useful in engineering quantum dynamics for quantum information processing.
|
|
Received: 18 April 2016
Published: 01 August 2016
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
05.45.Ac
|
(Low-dimensional chaos)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
|
|
|
[1] | Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 | [2] | Loyd S 1993 Science 261 1569 | [3] | Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 | | Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 | [4] | Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648 | [5] | Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Communication (Cambridge: Cambridge University Press) | [6] | Tang S Q, Yuan J B, Wang X W and Kuang L M 2015 Chin. Phys. Lett. 32 040303 | [7] | Song W, Huang Y S, Yang M and Cao Z L 2015 Chin. Phys. Lett. 32 088701 | [8] | Zhu W T, Ren Q B, Duan L W and Chen Q H 2016 Chin. Phys. Lett. 33 050302 | [9] | Osenda O and Serra P 2007 Phys. Rev. A 75 042331 | | Lin Y C, Lin C Y and Ho Y K 2013 Phys. Rev. A 87 022316 | [10] | Vatasescu M 2013 Phys. Rev. A 88 063415 | [11] | Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S and Monroe C 2013 Phys. Rev. Lett. 110 203001 | [12] | Lü X Y, Jing H, Ma J Y and Wu Y 2015 Phys. Rev. Lett. 114 253601 | [13] | Fratini E and Pilati S 2015 Phys. Rev. A 91 061601(R) | [14] | Haake F 1991 Quantum Signature of Chaos (Berlin: Springer) | [15] | Chaudhury S, Smith A, Anderson B E, Ghose S and Jessen P S 2009 Nature 461 768 | [16] | Emerson J, Weinstein Y S, Lloyd S and Cory D G 2002 Phys. Rev. Lett. 89 284102 | | Xie Q T and Hai W H 2005 Eur. Phys. J. D 33 265 | [17] | Wang X G, Ghose S, Sanders B C and Hu B 2004 Phys. Rev. E 70 016217 | [18] | Furuya K, Nemes M C and Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524 | [19] | Steck D A, Oskay W H and Raizen M G 2001 Science 293 274 | | Steck D A 2009 Nature 461 736 | [20] | Hensinger W K, Haffner H, Browaeys A, Heckenberg N R, Helmerson K, McKenzie C, Milburn G J, Phillips W D, Rolston S L, Rubinsztein-Dunlop H and Upcroft B 2001 Nature 412 52 | [21] | Ma R, Tai M E, Preiss P M, Bakr W S, Simon J and Greiner M 2011 Phys. Rev. Lett. 107 095301 | [22] | Tan J T, Lu G B, Luo Y L and Hai W H 2014 Chaos 24 043114 | [23] | Gardiner S A, Cirac J I and Zoller P 1997 Phys. Rev. Lett. 79 4790 | [24] | Chen Y A, Nascimbene S, Aidelsburger M, Atala M, Trotzky S and Bloch I 2011 Phys. Rev. Lett. 107 210405 | [25] | Dunlap D H and Kenkre V M 1986 Phys. Rev. B 34 3625 | [26] | Chen H, Tan J T, Hai K, Zhang X L and Hai W H 2015 Eur. Phys. J. D 69 278 | [27] | Tan J T, Zou M L, Luo Y L and Hai W H 2016 Chaos 26 063106 | [28] | Sun Y H, Zhu X and Kuang L M 2005 Chin. Phys. Lett. 22 1833 | [29] | Liao Q H, Fang G Y, Wang Y Y, Ahmad M A and Liu S T 2010 Chin. Phys. Lett. 27 070304 | [30] | Vedral V 2002 Rev. Mod. Phys. 74 197 | | Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619 | [31] | Rényi A 1970 Probability Theory (Amsterdam: North-Holland) | [32] | Kuhr S, Alt W, Schrader D, Müller M, Gomer V and Meschede D 2001 Science 293 278 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|