Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 070304    DOI: 10.1088/0256-307X/33/7/070304
GENERAL |
Noiseless Linear Amplification with General Local Unitary Operations
Song Yang**, Ning-Juan Ruan, Yun Su, Xu-Ling Lin, Zhi-Qiang Wu
Beijing Institute of Space Mechanics and Electricity, Beijing 100094
Cite this article:   
Song Yang, Ning-Juan Ruan, Yun Su et al  2016 Chin. Phys. Lett. 33 070304
Download: PDF(1157KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Noiseless linear amplification (NLA), first proposed by Ralpha et al., is a nondeterministic amplification process which gives gain to the Fock state $|n\rangle\rightarrow g^n|n\rangle$, with $g$ being the amplification gain. We here give a general framework for improving the NLA scheme with arbitrary general local unitary operations. We derive the improvement in the amplification gain in 0–1 photon subspace. In particular, we study if the local unitary is composed of single mode squeezing and coherent displacement operation. Finally, numerical simulations show that local unitary operation could give a further enhancement in the amplification gain as well as the success probability, making the NLA more feasible in future optic quantum communications.
Received: 23 March 2016      Published: 01 August 2016
PACS:  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/070304       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/070304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Song Yang
Ning-Juan Ruan
Yun Su
Xu-Ling Lin
Zhi-Qiang Wu
[1]Braunstein S L and van-Loock P 2005 Rev. Mod. Phys. 77 513
[2]Weedbrook C et al 2012 Rev. Mod. Phys. 84 621
[3]Caves C M 1982 Phys. Rev. D 26 1817
[4]Ralph T C and Lund A P 2008 Quantum Communication Measurement and Computing Proceedings of 9th International Conference (Calgary, Canada 19–24 August 2008) p 155
[5]Ralph T C 2011 Phys. Rev. A 84 022339
[6]Zhang S L et al 2012 Phys. Rev. A 86 034302
[7]Gisin N et al 2010 Phys. Rev. Lett. 105 070501
[8]Brask J B et al 2012 Phys. Rev. A 85 042116
[9]Fiurá?ek J and Cerf N J 2012 Phys. Rev. A 86 060302
[10]Blandino R et al 2012 Phys. Rev. A 86 012327
[11]Meng G S et al 2012 Phys. Rev. A 86 042305
[12]Xiang G Y et al 2010 Nat. Photon. 4 316
[13]Usuga M A et al 2010 Nat. Phys. 6 767
[14]Ferreyrol F et al 2010 Phys. Rev. Lett. 104 123603
[15]Ferreyrol F et al 2011 Phys. Rev. A 83 063801
[16]Barbieri M et al 2011 Laser Phys. Lett. 8 411
[17]Zavatta A et al 2011 Nat. Photon. 5 52
[18]Osorio C I et al 2012 Phys. Rev. A 86 023815
[19]Mi?uda M et al 2012 Phys. Rev. Lett. 109 180503
[20]Kocsis S et al 2012 Nat. Phys. 9 23
[21]Hu M J and Zhang Y S 2016 arXiv:1601.05582v1
[22]Yang S et al 2013 Phys. Rev. A 87 024302
[23]Hong C K and Mandel L 1986 Phys. Rev. Lett. 56 58
[24]Rarity J G et al 1987 Opt. Commun. 62 201
[25]Lvovsky A I et al 2001 Phys. Rev. Lett. 87 050402
[26]García-Patrón R et al 2004 Phys. Rev. Lett. 93 130409
[27]Opatrny T et al 2000 Phys. Rev. A 61 032302
[28]Kitagawa A et al 2006 Phys. Rev. A 73 042310
[29]Zhang S L and van-Loock P 2010 Phys. Rev. A 82 062316
[30]Takahashi H et al 2010 Nat. Photon. 4 178
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 070304
[2] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 070304
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 070304
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 070304
[5] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 070304
[6] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 070304
[7] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 070304
[8] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 070304
[9] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 070304
[10] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 070304
[11] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 070304
[12] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 070304
[13] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 070304
[14] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 070304
[15] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 070304
Viewed
Full text


Abstract