Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 063701    DOI: 10.1088/0256-307X/33/6/063701
ATOMIC AND MOLECULAR PHYSICS |
Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards
Zhi-Hui Yang1,2,3, Hao Liu1,2,3, Yue-Hong He1,2,3, Man Wang1,2,3, Yong-Quan Wan1,2,3, Yi-He Chen1,2, Lei She1,2**, Jiao-Mei Li1,2**
1Key Laboratory of Atomic Frequency Standard, Chinese Academy of Sciences, Wuhan 430071
2Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
3University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Zhi-Hui Yang, Hao Liu, Yue-Hong He et al  2016 Chin. Phys. Lett. 33 063701
Download: PDF(683KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a method to determine the optimal power of the microwave resonance transition that simultaneously improves the signal-to-noise ratio and reduces line width based on saturation broadening theory and experiment. Saturation broadening spectra of the ground state hyperfine transition of trapped $^{199}$Hg$^{+}$ ions are measured and analyzed. The value of the optimal microwave power is obtained by using the proposed method and is verified. Rabi oscillations decay spectra of trapped $^{199}$Hg$^{+}$ ions are observed and the optimal microwave irradiation time for the maximum transition signal intensity is determined. This work will help to improve the short-term frequency stability of the mercury ion microwave frequency standard.
Received: 24 December 2015      Published: 30 June 2016
PACS:  37.10.Ty (Ion trapping)  
  32.10.Fn (Fine and hyperfine structure)  
  32.70.Jz (Line shapes, widths, and shifts)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/063701       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/063701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Hui Yang
Hao Liu
Yue-Hong He
Man Wang
Yong-Quan Wan
Yi-He Chen
Lei She
Jiao-Mei Li
[1]Tjoelker R L et al 1996 Annu. PTTI Meeting (Reston VA) p 245
[2]Prestage J D et al 1992 J. Mod. Opt. 39 221
[3]Prestage J D et al 1989 J. Appl. Phys. 66 1013
[4]Burt E A et al 2009 Phys. Rev. A 79 062506
[5]Seubert J et al 2013 AAS/AIAA Space Flight Mech. Meeting (Kauai USA) 13 325
[6]Prestage J D et al 2009 Joint Meeting EFTF IEEE IFCS (Besancon France) p 54
[7]Ely T A et al 2014 AAS/AIAA Space Flight Mech. Meeting (Santa Fe USA) 14 254
[8]Seubert J and Ely T A 2016 AAS/AIAA Space Flight Mech. Meeting (Napa USA) 16 258
[9]Fisk P T H 1997 Rep. Prog. Phys. 60 761
[10]Prestage J D et al 2000 IEE/EIA IFCS PDA Exhibition (Kansas City MO) p 706
[11]He Y H et al 2012 Chin. Phys. Lett. 29 123201
[12]Burt E A and Tjoelkler R L 2006 IPN Prog. Report (Pasadena California) p 42
[13]Wolfgang Demtr? 2008 Laser Spectroscopy: Basic Concepts and Instrumentation (New York: Springer-Verlag) p 29
[14]Riehle F 2004 Frequency Standards: Basics and Applications (Berlin: Wiley-VCH Verlag) 8 132
[15]Shimoda K 1976 Saturation Spectroscopy: in High-Resolution Laser Spectroscopy (New York: Springer-Verlag) 13 95
[16]Wang Y Q et al 1986 Principle Quantum Frequency Standard (Beijing: Sicence Press) p 186 (in Chinese)
[17]McGuire M D et al 1978 Phys. Rev. A 17 1999
[18]Jardino M and Desaintfuscien M 1980 IEEE Trans. Instrum. Meas. 29 163
[19]Yang Y N et al 2014 Chin. Phys. B 23 093702
[20]Liu H et al 2014 Chin. Phys. Lett. 31 063201
Related articles from Frontiers Journals
[1] Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, and Ke-Lin Gao. Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage[J]. Chin. Phys. Lett., 2020, 37(9): 063701
[2] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 063701
[3] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 063701
[4] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 063701
[5] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 063701
[6] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 063701
[7] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 063701
[8] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 063701
[9] CHEN Ting, DU Li-Jun, SONG Hong-Fang, LIU Pei-Liang, HUANG Yao, TONG Xin, GUAN Hua, GAO Ke-Lin. Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap[J]. Chin. Phys. Lett., 2015, 32(08): 063701
[10] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 063701
[11] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2014, 31(11): 063701
[12] LIU Pei-Liang, HUANG Yao, BIAN Wu, SHAO Hu, QIAN Yuan, GUAN Hua, GAO Ke-Lin. Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards[J]. Chin. Phys. Lett., 2014, 31(11): 063701
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 063701
[14] CAO Jian, TONG Xin, CUI Kai-Feng, SHANG Jun-Juan, SHU Hua-Lin, HUANG Xue-Ren. Simulation and Optimization of Miniature Ring-Endcap Ion Traps[J]. Chin. Phys. Lett., 2014, 31(04): 063701
[15] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. A Configurable Surface-Electrode Ion Trap Design for Quantum Information Processing[J]. Chin. Phys. Lett., 2013, 30(12): 063701
Viewed
Full text


Abstract