FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Double-Cladding Seven-Core Photonic Crystal Fiber for Hundred-Watts-Level All-Fiber-Integrated Supercontinuum Generation |
Hui-Feng Wei1,4, Sheng-Ping Chen2, Jing Hou2, Kang-Kang Chen3, Jin-Yan Li1** |
1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 2College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 3Wuhan YSL Photonics Co. Ltd, Wuhan 430073 4State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company, Wuhan 430073
|
|
Cite this article: |
Hui-Feng Wei, Sheng-Ping Chen, Jing Hou et al 2016 Chin. Phys. Lett. 33 064202 |
|
|
Abstract A seven-core photonic crystal fiber (PCF) is fabricated and shown to possess a Gaussian-like far-field-intensity distribution. The seven-core PCF, designed with double-cladding structure and zero dispersion wavelength at 927 nm, is utilized to build up a 104 W all-fiber-integrated supercontinuum (SC) source with total conversion efficiency up to 74.3%. The average output power of SC can be further scaled based on this multi-core PCF.
|
|
Received: 19 January 2016
Published: 30 June 2016
|
|
PACS: |
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.79.Nv
|
(Optical frequency converters)
|
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
|
|
|
[1] | Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25 | [2] | Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135 | [3] | Yan P G, Ruan S C, Lin H J, Du C L, Yu Y Q, Lu K C and Yao J Q 2004 Chin. Phys. Lett. 21 1093 | [4] | Yan P G, Shu J, Ruan S C, Zhao J, Zhao J Q, Du C L, Guo C Y, Wei H F and Luo J 2011 Opt. Express 19 4985 | [5] | Hu M L, Wang C Y and Li Y F 2006 Opt. Express 14 1942 | [6] | Yan P G, Dong R J, Zhang G L, Li H Q and Ruan S C 2013 Opt. Commun. 293 133 | [7] | Richardson D J, Nilsson J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63 | [8] | Chen K K, Price J H V, Alam S, Hayes J R, Lin D, Malinowski A and Richardson D J 2010 Opt. Express 18 14385 | [9] | Fang X H, Hu M L, Xie C, Song Y J, Chai L and Wang C Y 2011 Opt. Lett. 36 1005 | [10] | Avdokhin A V, Popov S V and Tayloret J R 2003 Opt. Lett. 28 1353 | [11] | Hsiung P L, Chen Y, Tony H K, James G F, Christiano J S M, Sergei V P, James R T and Valentin P G 2004 Opt. Express 12 5287 | [12] | Cumberland B A, Travers J C, Popov S V and Tayloret J R 2008 Opt. Express 16 5954 | [13] | Travers J C, Rulkov A B, Cumberland B A, Popov S V and Taylor J R 2008 Opt. Express 16 14435 | [14] | Labat D, Me' lin G, Mussot A, Fleureau A, Galkovsky L, Lempereur S and Kudlinski A 2011 IEEE Photon. J. 3 815 | [15] | Chen K K, Alam S, Price J H V, Hayes J R, Lin D, Malinowski A, Codemard C, Ghosh D, Pal M, Bhadra S K and Richardson D J 2010 Opt. Express 18 5426 | [16] | Chen H W, Chen S P, Wang J H, Chen Z L and Hou J 2011 Opt. Commun. 284 5484 | [17] | Hu X H, Zhang W, Yang Z, Wang Y S, Zhao W, Li X H, Wang H S, Li C and Shen D 2011 Opt. Lett. 36 2659 | [18] | Chen H W, Chen Z L, Chen S P, Hou J and Lu Q S 2013 Appl. Phys. Express 6 032702 | [19] | Xi X M, Chen Z L, Sun G L and Hou J 2011 Appl. Opt. 50 E50 | [20] | Zhou H, Chen Z L, Xi X M, Hou J and Chen J B 2012 Appl. Opt. 51 390 | [21] | Fang X H, Hu M L, Huang L L, Chai L, Dai N L, Li J Y, Tashchilina A Y, Zheltikov A M and Wang C Y 2012 Opt. Lett. 37 2292 | [22] | Wei H F, Chen H W, Chen S P, Yan P G, Liu T, Guo L, Lei Y, Chen Z L, Li J, Zhang X B, Zhang G L, Hou J, Tong W J, Luo J, Li J Y and Chen K K 2013 Laser Phys. Lett. 10 045101 | [23] | Yan P G, Zhang G L, Wei H F, Ouyang D Q, Huang S S, Zhao J Q, Chen K K, Luo J and Ruan S C 2013 J. Lightwave Technol. 31 3658 | [24] | Chen S P, Chen H W, Hou J and Liu Z J 2009 Opt. Express 17 24008 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|