Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 063201    DOI: 10.1088/0256-307X/33/6/063201
ATOMIC AND MOLECULAR PHYSICS |
Initial Tests of a Rubidium Space Cold Atom Clock
Lin Li, Qiu-Zhi Qu, Bin Wang, Tang Li, Jian-Bo Zhao, Jing-Wei Ji, Wei Ren, Xin Zhao, Mei-Feng Ye, Yuan-Yuan Yao, De-Sheng Lü**, Liang Liu**
Key Laboratory of Quantum Optics and Center of Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
Cite this article:   
Lin Li, Qiu-Zhi Qu, Bin Wang et al  2016 Chin. Phys. Lett. 33 063201
Download: PDF(1009KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the initial test results of a rubidium ($^{87}$Rb) space cold atom clock (SCAC). The space-qualified $^{87}$Rb SCAC is composed of the physical package, the optical bench, the microwave synthesizer and the control electronics. After the system is integrated, about 10$^{8}$ $^{87}$Rb cold atoms are captured by magneto-optical trap. The linewidth of the Ramsey fringe is about 10 Hz for the free evolution time of 50 ms on the ground, and the signal-to-noise ratio is measured to be larger than 300. We demonstrate a good medium-term fractional frequency stability of $1.5\times10^{-14}$@1000 s in the closed-loop operation on the ground. The main effects of the noise on the stability are also presented, and the optimized operating parameter is analyzed for the operation of SCAC in the microgravity environment.
Received: 03 February 2016      Published: 30 June 2016
PACS:  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
  37.10.De (Atom cooling methods)  
  07.07.-a (General equipment)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/063201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/063201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lin Li
Qiu-Zhi Qu
Bin Wang
Tang Li
Jian-Bo Zhao
Jing-Wei Ji
Wei Ren
Xin Zhao
Mei-Feng Ye
Yuan-Yuan Yao
De-Sheng Lü
Liang Liu
[1]Guéna J et al 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391
[2]Gerginov V et al 2010 Metrologia 47 65
[3]Ovchinnikov Y and Marra G 2011 Metrologia 48 87
[4]Levi F et al 2014 Metrologia 51 270
[5]Laurent P H et al 2006 Appl. Phys. B 84 683
[6]Laurent P H et al 2015 C. R. Phys. 16 540
[7]Lü B L et al 2011 Manned Spaceflight 5 33 (in Chinese)
[8]Lü D S et al 2011 Manned Spaceflight 1 47 (in Chinese)
[9]Kokkelmans B et al 1997 Phys. Rev. A 56 R4389
[10]Fertig C and Gibble K 2000 Phys. Rev. Lett. 85 1622
[11]Ren W et al 2015 Vacuum 116 54
[12]Qu Q Z et al 2015 Chin. Opt. Lett. 13 061405
[13]Wang B et al 2011 Chin. Phys. Lett. 28 063701
[14]Lü D S et al 2011 Chin. Phys. Lett. 28 063201
[15]Lü D S, Qu Q Z, Wang B, Zhao J B, Li T, Liu L and Wang Y Z 2011 Chin. Phys. B 20 063201
[16]Ren W, Gao Y C, Li T, Lü D S and Liu L 2016 Chin. Phys. B 25 (in Press)
[17]Vanier J and Audoin C 1989 Quantum Physics of Atomic Frequency Standard (Bristol: Adam Hilger)
[18]Santarelli G, Laurent P H, Lemonde P, Clairon A, Mann A G, Chang S and Luiten A N 1999 Phys. Rev. Lett. 82 4619
[19]Wynands R and Weyers S 2005 Metrologia 42 S64
[20]Brzozowski T M, Maczynska M, Zawada M, Zachorowski J and Gawlik W 2002 J. Opt. B 4 62
[21]Lewandowski H J, Harber D M, Whitaker D L and Cornell E A 2003 J. Low Temp. Phys. 132 309
[22]Santarelli G, Audoin C, Makdissi A, Laurent P H, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 895
Related articles from Frontiers Journals
[1] Huihui Wang, Yuechun Jiao, Jianming Zhao, Liantuan Xiao, and Suotang Jia. Microwave Induced Ultralong-Range Charge Migration in a Rydberg Atom[J]. Chin. Phys. Lett., 2022, 39(1): 063201
[2] JIA Guang-Rui, ZHAO Yue-Jin, ZHANG Xian-Zhou, LIU Yu-Fang, YU Kun. The Dynamics of Rubidium Atoms in THz Laser Fields[J]. Chin. Phys. Lett., 2013, 30(7): 063201
[3] JIA Guang-Rui, ZHAO Yue-Jin, ZHANG Xian-Zhou, LIU Yu-Fang, YU Kun. Population Evolution of Rydberg Rubidium Atoms by Half-Cycle Pulses[J]. Chin. Phys. Lett., 2012, 29(11): 063201
[4] JIANG Li-Juan, ZHANG Xian-Zhou, MA Huan-Qiang, XIA Li-Hua, JIA Guang-Rui. Coherent Control of Lithium Atom by Adiabatic Rapid Passage with Chirped Microwave Pulses[J]. Chin. Phys. Lett., 2012, 29(7): 063201
[5] JIA Guang-Rui, **, ZHANG Xian-Zhou, LIU Yu-Fang, YU Kun, ZHAO Yue-Jin . Calculation of Multiphoton Transition in Li Atoms via Chirped Microwave Pulse[J]. Chin. Phys. Lett., 2011, 28(10): 063201
[6] LÜ, De-Sheng**, QU Qiu-Zhi, WANG Bin, ZHAO Jian-Bo, LIU Liang**, WANG Yu-Zhu . Improvement on Temperature Measurement of Cold Atoms in a Rubidium Fountain[J]. Chin. Phys. Lett., 2011, 28(6): 063201
[7] ZHOU Zi-Chao, WEI Rong, SHI Chun-Yan, LV De-Sheng, LI Tang, WANGYu-Zhu. Progress of the 87Rb Fountain Clock[J]. Chin. Phys. Lett., 2009, 26(12): 063201
[8] JIA Guang-Rui, ZHANG Ji-Cai, ZHANG Xian-Zhou, REN Zhen-Zhong. Coherent Control of Population Transfer in Li Atoms via Chirped Microwave Pulses[J]. Chin. Phys. Lett., 2009, 26(10): 063201
[9] ZHOU Xiao-Ji, CHEN Xu-Zong, CHEN Jing-Biao, WANG Yi-Qiu, LI Jia-Ming. Microwave Atomic Clock in the Optical Lattice with Specific Frequency[J]. Chin. Phys. Lett., 2009, 26(9): 063201
[10] LIU Lu, GUO Tao, DENG Ke, LIU Xin-Yuan, CHEN Xu-Zong, WANG Zhong. Frequency Stability of Atomic Clocks Based on Coherent Population Trapping Resonance in 85Rb[J]. Chin. Phys. Lett., 2007, 24(7): 063201
[11] YU De-Shui, ZHUANG Wei, CHEN Jing-Biao. Microlaser with Ramsey Separated Fields Cavity[J]. Chin. Phys. Lett., 2007, 24(6): 063201
[12] LI Yi-min, CHEN Xu-zong, GAN Jian-hua, JI Wang-xi, HUA Jing-shan, YANG Dong-hai, WANG Yi-qiu . Intensity Dependence of Cesium D2-Line Saturation Spectra[J]. Chin. Phys. Lett., 1996, 13(6): 063201
Viewed
Full text


Abstract