ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Initial Tests of a Rubidium Space Cold Atom Clock |
Lin Li, Qiu-Zhi Qu, Bin Wang, Tang Li, Jian-Bo Zhao, Jing-Wei Ji, Wei Ren, Xin Zhao, Mei-Feng Ye, Yuan-Yuan Yao, De-Sheng Lü**, Liang Liu** |
Key Laboratory of Quantum Optics and Center of Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
|
|
Cite this article: |
Lin Li, Qiu-Zhi Qu, Bin Wang et al 2016 Chin. Phys. Lett. 33 063201 |
|
|
Abstract We report the initial test results of a rubidium ($^{87}$Rb) space cold atom clock (SCAC). The space-qualified $^{87}$Rb SCAC is composed of the physical package, the optical bench, the microwave synthesizer and the control electronics. After the system is integrated, about 10$^{8}$ $^{87}$Rb cold atoms are captured by magneto-optical trap. The linewidth of the Ramsey fringe is about 10 Hz for the free evolution time of 50 ms on the ground, and the signal-to-noise ratio is measured to be larger than 300. We demonstrate a good medium-term fractional frequency stability of $1.5\times10^{-14}$@1000 s in the closed-loop operation on the ground. The main effects of the noise on the stability are also presented, and the optimized operating parameter is analyzed for the operation of SCAC in the microgravity environment.
|
|
Received: 03 February 2016
Published: 30 June 2016
|
|
PACS: |
32.30.Bv
|
(Radio-frequency, microwave, and infrared spectra)
|
|
37.10.De
|
(Atom cooling methods)
|
|
07.07.-a
|
(General equipment)
|
|
|
|
|
[1] | Guéna J et al 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391 | [2] | Gerginov V et al 2010 Metrologia 47 65 | [3] | Ovchinnikov Y and Marra G 2011 Metrologia 48 87 | [4] | Levi F et al 2014 Metrologia 51 270 | [5] | Laurent P H et al 2006 Appl. Phys. B 84 683 | [6] | Laurent P H et al 2015 C. R. Phys. 16 540 | [7] | Lü B L et al 2011 Manned Spaceflight 5 33 (in Chinese) | [8] | Lü D S et al 2011 Manned Spaceflight 1 47 (in Chinese) | [9] | Kokkelmans B et al 1997 Phys. Rev. A 56 R4389 | [10] | Fertig C and Gibble K 2000 Phys. Rev. Lett. 85 1622 | [11] | Ren W et al 2015 Vacuum 116 54 | [12] | Qu Q Z et al 2015 Chin. Opt. Lett. 13 061405 | [13] | Wang B et al 2011 Chin. Phys. Lett. 28 063701 | [14] | Lü D S et al 2011 Chin. Phys. Lett. 28 063201 | [15] | Lü D S, Qu Q Z, Wang B, Zhao J B, Li T, Liu L and Wang Y Z 2011 Chin. Phys. B 20 063201 | [16] | Ren W, Gao Y C, Li T, Lü D S and Liu L 2016 Chin. Phys. B 25 (in Press) | [17] | Vanier J and Audoin C 1989 Quantum Physics of Atomic Frequency Standard (Bristol: Adam Hilger) | [18] | Santarelli G, Laurent P H, Lemonde P, Clairon A, Mann A G, Chang S and Luiten A N 1999 Phys. Rev. Lett. 82 4619 | [19] | Wynands R and Weyers S 2005 Metrologia 42 S64 | [20] | Brzozowski T M, Maczynska M, Zawada M, Zachorowski J and Gawlik W 2002 J. Opt. B 4 62 | [21] | Lewandowski H J, Harber D M, Whitaker D L and Cornell E A 2003 J. Low Temp. Phys. 132 309 | [22] | Santarelli G, Audoin C, Makdissi A, Laurent P H, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 895 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|