Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 038801    DOI: 10.1088/0256-307X/33/3/038801
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Comprehensive Study of SF$_{6}$/O$_{2}$ Plasma Etching for Mc-Silicon Solar Cells
Tao Li**, Chun-Lan Zhou, Wen-Jing Wang
Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Tao Li, Chun-Lan Zhou, Wen-Jing Wang 2016 Chin. Phys. Lett. 33 038801
Download: PDF(711KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mask-free SF$_{6}$/O$_{2}$ plasma etching technique is used to produce surface texturization of mc-silicon solar cells for efficient light trapping in this work. The SEM images and mc-silicon etching rate show the influence of plasma power, SF$_{6}$/O$_{2}$ flow ratios and etching time on textured surface. With the acidic-texturing samples as a reference, the reflection and IQE spectra are obtained under different experimental conditions. The IQE spectrum measurement shows an evident increase in the visible and infrared responses. By using the optimized plasma power, SF$_{6}$/O$_{2 }$flow ratios and etching time, the optimal efficiency of 15.7% on $50\times50$ mm$^{2}$ reactive ion etching textured mc-silicon silicon solar cells is achieved, mostly due to the improvement in the short-circuit current density. The corresponding open-circuit voltage, short-circuit current density and fill factor are 611 mV, 33.6 mA/cm$^{2}$, 76.5%, respectively. It is believed that such a low-cost and high-performance texturization process is promising for large-scale industrial silicon solar cell manufacturing.
Received: 11 August 2015      Published: 31 March 2016
PACS:  88.40.jj (Silicon solar cells)  
  88.40.H- (Solar cells (photovoltaics))  
  88.40.-j (Solar energy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/038801       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/038801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tao Li
Chun-Lan Zhou
Wen-Jing Wang
[1]Yoo J S, Yu G J and Yi J S 2011 Sol. Energy Mater. Sol. Cells 95 2
[2]Lee K, Ha M, Kim J and Jeong J 2011 Sol. Energy Mater. Sol. Cells 95 66
[3]Yoo J, Kim K, Thamilselvan M, Lakshminarayn N, Kim Y, Lee J, Yoo K and Yi J 2008 J. Phys. D: Appl. Phys. 41 125205
[4]Nositschka W A, Beneking C, Voigt O and Kurz H 2003 Sol. Energy Mater. Sol. Cells 76 155
[5]Nositschka W, Voigt O, Manshanden P and Kurz H 2003 Sol. Energy Mater. Sol. Cells 80 227
[6]Henry M, Welch C and Scherer A 2009 J. Vac. Sci. Technol. A 27 1211
[7]Inomata Y, Fukui K and Shirasawa K 1997 Sol. Energy Mater. Sol. Cells 48 237
[8]Yoo J S 2010 Sol. Energy 84 730
[9]Kohata H and Saito Y 2010 Sol. Energy Mater. Sol. Cells 94 2124
[10]Limcharoen A, Pakpum C and Limsuwan P 2013 Chin. Phys. Lett. 30 075202
[11]Zhong M, Song Z T, Liu B, Feng S L and Chen B 2008 Chin. Phys. Lett. 25 762
[12]Ma X Z, Zhang R, Sun J B, Shi Y, Zhao Y 2015 Chin. Phys. Lett. 32 045202
[13]Zhang Z G, Dong F L, Cheng T, Qian K M, Qiu K, Zhang Q C, Chu W G and Wu X P 2014 Chin. Phys. Lett. 31 114208
[14]Zhang Y C, Yan J, Zhao S Q, Wang W L and Liang W J 2014 Chin. Phys. Lett. 31 086101
[15]Su L N, Lv L, Li X X, Qin H and Gu X F 2015 Chin. Phys. Lett. 32 047301
[16]Cheng Y, Zou J J, Wan M, Wang W L, Peng X C, Feng L, Deng W J and Zhu Z F 2015 Chin. Phys. Lett. 32 058102
Related articles from Frontiers Journals
[1] Gang Li, Hong-Wei Cheng, Li-Fang Guo, Kai-Ying Wang, Zai-Jun Cheng. An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 038801
[2] Yue Zhang, Cao Yu, Miao Yang, Lin-Rui Zhang, Yong-Cai He, Jin-Yan Zhang, Xi-Xiang Xu, Yong-Zhe Zhang, Xue-Mei Song, Hui Yan. Significant Improvement of Passivation Performance by Two-Step Preparation of Amorphous Silicon Passivation Layers in Silicon Heterojunction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(3): 038801
[3] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 038801
[4] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 038801
[5] LI Tao, WANG Wen-Jing. Calculated and Experimental Research of Sheet Resistances of Laser-Doped Silicon Solar Cells[J]. Chin. Phys. Lett., 2015, 32(02): 038801
[6] GUO Chun-Lin, WANG Lei, ZHANG Yan-Rong, ZHOU Hai-Feng, LIANG Feng, YANG Zhen-Hui, YANG De-Ren. High-Pressure Water-Vapor Annealing for Enhancement of a-Si:H Film Passivation of Silicon Surface[J]. Chin. Phys. Lett., 2014, 31(10): 038801
[7] ZHANG Wei, CHEN Chen, JIA Rui, Janssen G. J. M., ZHANG Dai-Sheng, XING Zhao, Bronsveld P. C. P., Weeber A. W., JIN Zhi, LIU Xin-Yu . Optimization of Metal Coverage on the Emitter in n-Type Interdigitated Back Contact Solar Cells Using a PC2D Simulation[J]. Chin. Phys. Lett., 2013, 30(7): 038801
[8] KIM Un-Chol, JIANG Xiao-Qing. Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator[J]. Chin. Phys. Lett., 2012, 29(6): 038801
[9] MA Xun, LIU Zu-Ming, QU Sheng, WANG Shu-Rong, HAO Rui-Ting, LIAO Hua . A New Method to Measure Trap Characteristics of Silicon Solar Cells[J]. Chin. Phys. Lett., 2011, 28(2): 038801
Viewed
Full text


Abstract