Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 038502    DOI: 10.1088/0256-307X/33/3/038502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination
Lan-Feng Tang1,2, Hai Lu1,2**, Fang-Fang Ren1,2, Dong Zhou1,2, Rong Zhang1,2, You-Dou Zheng1,2, Xiao-Ming Huang3,
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
3Peter Grünberg Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210003
Cite this article:   
Lan-Feng Tang, Hai Lu, Fang-Fang Ren et al  2016 Chin. Phys. Lett. 33 038502
Download: PDF(634KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electrical instability behaviors of amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) under ultraviolet (UV) illumination are studied. As UV radiation dosage increases, the turn-on voltage of the TFT shows continuous negative shift, which is accompanied by enhanced degradation of sub-threshold swing and field-effect mobility. The electrical instability is caused by the increased carrier concentration and defect states within the device channel, which can be further attributed to additional oxygen vacancy generation and ionization of oxygen vacancy related defects upon UV illumination, respectively. Furthermore, the performance of the a-IGZO TFT treated with UV radiation can gradually recover to its initial state after long-time storage.
Received: 02 December 2015      Published: 31 March 2016
PACS:  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  73.61.Jc (Amorphous semiconductors; glasses)  
  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/038502       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/038502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lan-Feng Tang
Hai Lu
Fang-Fang Ren
Dong Zhou
Rong Zhang
You-Dou Zheng
Xiao-Ming Huang
[1]Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
[2]Zan H W, Tsai W W, Chen C H and Tsai C C 2011 Adv. Mater. 23 4237
[3]Jeong J K, Yang H W, Jeong J H, Mo Y G and Kim H D 2008 Appl. Phys. Lett. 93 123508
[4]Ji K H, Kim J I, Jung H Y, Park S Y, Choi R, Kim U K, Hwang C S, Lee D, Hwang H and Jeong J K 2011 Appl. Phys. Lett. 98 103509
[5]Yang S, Cho D H, Ryu M K, Park S H K, Hwang C S, Jang J and Jeong J K 2010 Appl. Phys. Lett. 96 213511
[6]Ahn B D, Jeong W H, Shin H S, Kim D L, Kim H J, Jeong J K, Choi S H and Han M K 2009 Electrochem. Solid-State Lett. 12 H430
[7]Lee J, Park J S, Pyo Y S, Lee D B, Kim E H, Stryakhilev D, Kim T W, Jin D U and Mo Y G 2009 Appl. Phys. Lett. 95 123502
[8]Kamiya T, Nomura K and Hosono H 2010 Sci. Technol. Adv. Mater. 11 044305
[9]Yang S, Ji K H, Kim U K, Hwang C S, Park S K, Hwang C S, Jang J and Jeong J K 2011 Appl. Phys. Lett. 99 102103
[10]Nomura K, Kamiya T, Hirano M and Hosono H 2009 Appl. Phys. Lett. 95 013502
[11]Janotti A G C and Walle V 2005 Appl. Phys. Lett. 87 122102
[12]Oh H, Yoon S M, Ryu M K, Hwang C S, Yang S and Park S H K 2010 Appl. Phys. Lett. 97 183502
[13]Huang X, Wu C, Lu H, Ren F, Xu Q, Ou H, Zhang R and Zheng Y 2012 Appl. Phys. Lett. 100 243505
Related articles from Frontiers Journals
[1] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 038502
[2] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 038502
[3] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 038502
[4] YU Guang, WU Chen-Fei, LU Hai, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou, HUANG Xiao-Ming. Frequency Performance of Ring Oscillators Based on a-IGZO Thin-Film Transistors[J]. Chin. Phys. Lett., 2015, 32(4): 038502
[5] Van Ha Nguyen, Hanjung Song. Impact of Temperature Variation on Performance of Carbon Nanotube Field-Effect Transistor–Based on Chaotic Oscillator: A Quantum Simulation Study[J]. Chin. Phys. Lett., 2015, 32(03): 038502
[6] NAM Sang Guk, NGUYEN Van Ha, SONG Hanjung. Photodiode-Based Chua's Circuit with Light Controllability[J]. Chin. Phys. Lett., 2014, 31(06): 038502
[7] Van Ha Nguyen, Han Jung Song . Bifurcation Analysis of the Voltage Controlled Photosensitive Chaotic Oscillator[J]. Chin. Phys. Lett., 2013, 30(6): 038502
[8] ZHOU Ji-Chao, SONG Han-Jung. Effect of Temperature on a Two-Phase Clock-Driven Discrete-Time Chaotic Circuit[J]. Chin. Phys. Lett., 2013, 30(2): 038502
[9] FENG Chong, TANG Zhen-An, YU Jun. A Novel CMOS Device Capable of Measuring Near-Field Thermal Radiation[J]. Chin. Phys. Lett., 2012, 29(3): 038502
[10] WEI Rong-Shan, CHEN Jin-Feng, CHEN Shou-Chang, HE Ming-Hua. Reconfigurable Threshold Logic Element with SET and MOS Transistors[J]. Chin. Phys. Lett., 2012, 29(2): 038502
[11] WANG Wei, HUANG Bei-Ju, DONG Zan, LIU Hai-Jun, ZHANG Xu, GUAN Ning, CHEN Jin, GUO Wei-Lian, NIU Ping-Juan, CHEN Hong-Da. A Low-Voltage Silicon Light Emitting Device in Standard Salicide CMOS Technology[J]. Chin. Phys. Lett., 2010, 27(4): 038502
[12] ZHONG Min, SONG Zhi-Tang, LIU Bo, FENG Song-Lin, CHEN Bomy. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device[J]. Chin. Phys. Lett., 2008, 25(2): 038502
[13] LIU Qi-Bin, SONG Zhi-Tang, ZHANG Kai-Liang, WANG Liang-Yong, FENG Song-Lin, CHEN Bomy. Damascene Array Structure of Phase Change Memory Fabricated with Chemical Mechanical Polishing Method[J]. Chin. Phys. Lett., 2006, 23(8): 038502
[14] LEE Chee-Wei, CHIN Mee-Koy. Room-Temperature Inductively Coupled Plasma Etching of InP Using Cl2N2 and Cl2/CH4/H2[J]. Chin. Phys. Lett., 2006, 23(4): 038502
[15] SUN Chang-Zheng, ZHOU Jin-Bo, XIONG Bing, WANG Jian, LUO Yi. Vertical and Smooth, etching of InP by Cl2/CH4/Ar Inductively Coupled Plasma at Room Temperature[J]. Chin. Phys. Lett., 2003, 20(8): 038502
Viewed
Full text


Abstract