CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition |
Ying Zhao, Sheng-Rui Xu**, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao |
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
|
|
Cite this article: |
Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin et al 2016 Chin. Phys. Lett. 33 128102 |
|
|
Abstract C-implantation N-polar GaN films are grown on $c$-plane sapphire substrates by metal organic chemical vapor deposition. C-implantation induces a large number of defects and causes disorder of the lattice structure in the N-polar GaN film. Raman measurements performed on the N-polar GaN film before C-implantation after C-implantation and subsequent annealing at 1050$^{\circ}\!$C for 5 min indicate that after annealing the disordered GaN lattice is almost recovered. High resolution x-ray diffraction shows that after implantation there is an obvious increase of screw-dislocation densities, and the densities of edge dislocation show slight change. Carbon implantation can induce deep acceptors in GaN, thus the background carriers induced by the high oxygen incorporation in the N-polar GaN film will be partially compensated for, resulting in 25 times the resistivity, which is demonstrated by the temperature-dependent Hall-effect measurement.
|
|
Received: 27 September 2016
Published: 29 December 2016
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.10.Aj
|
(Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
78.55.Ap
|
(Elemental semiconductors)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61204006, 61574108, 61334002, 61474086 and 51302306. |
|
|
[1] | Ponce F A and Bour D P 1997 Nature 386 351 | [2] | Xu S R, Lin Z Y, Xue X Y, Liu Z Y, Ma J C, Jiang T, Mao W, Wang D H, Zhang J C and Hao Y 2012 Chin. Phys. Lett. 29 017803 | [3] | Zhang J F, Xu S R, Zhang J C and Hao Y 2011 Chin. Phys. B 20 057801 | [4] | Xu S R, Hao Y, Zhang J C, Zhou X W, Cao Y R, Ou X X, Mao W, Du D C and Wang H 2010 Chin. Phys. B 19 107204 | [5] | Dimitrov R, Murphy M, Smart J, Schaff W, Shealy J R, Eastman L F, Ambacher O and Stutzmann M 2000 J. Appl. Phys. 87 3375 | [6] | Rajan S, Wong M, Fu Y, Wu F, Speck J S and Mishra U K 2005 Jpn. J. Appl. Phys. 44 L1478 | [7] | Nakamura S, Senoh M, Nagahara S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y and Kiyoku H 1996 Appl. Phys. Lett. 69 4056 | [8] | Brazel E G, Chin M A and Narayanamuri V 1999 Appl. Phys. Lett. 74 2367 | [9] | Leung K, Wright A F and Stechel E B 1999 Appl. Phys. Lett. 74 2495 | [10] | Xu S R, Hao Y, Zhang J C, Cao Y R, Zhou X W, Yang L A, Ou X X, Chen K and Mao W 2010 J. Cryst. Growth 312 3521 | [11] | Sumiya M, Yoshimura K, Ohtsuka K and Fuke S 2000 Appl. Phys. Lett. 76 2098 | [12] | Tuomisto F, Saarinen K, Lucznik B, Grzegory I, Teisseyre H, Suski T, Porowski S, Hageman P R and Likonen J 2005 Appl. Phys. Lett. 86 031915 | [13] | Chung B C and Gershenzon M 1992 J. Appl. Phys. 72 651 | [14] | Moore W J, Freitas J A, Braga G C B, Molnar R J, Lee S K, Lee K Y and Song I J 2001 Appl. Phys. Lett. 79 2570 | [15] | Zolper J C, Wilson R G, Pearton S J and Stall R A 1996 Appl. Phys. Lett. 68 1945 | [16] | Abernathy C R, MacKenzie J D, Pearton S J and Hobson W S 1995 Appl. Phys. Lett. 66 1969 | [17] | Li X F, Chen Z Q, Liu C, Zhang H J and Kawasuso A 2015 J. Appl. Phys. 117 085706 | [18] | Sun W H, Chua S J, Wang L S and Zhang X H 2002 J. Appl. Phys. 91 4917 | [19] | Cao X A, Pearton S J, Dang G T, Zhang A P, Ren F et al 2000 J. Appl. Phys. 87 1091 | [20] | Katsikini M, Papagelis K, Paloura E C and Ves S 2003 J. Appl. Phys. 94 4389 | [21] | Limmer W, Ritter W, Sauer R, Mensching B, Liu C and Rauschenbach B 1998 Appl. Phys. Lett. 72 2589 | [22] | Seager C H, Wright A F, Yu J and G?tz W 2002 J. Appl. Phys. 92 6553 | [23] | Sun W H, Wang S T, Zhang J C, Chen K M, Qin G G, Tong Y Z, Yang Z J, Zhang G Y, Pu Y M, Zhang Q L, Li J, Lin J Y and Jiang H X 2000 J. Appl. Phys. 88 5662 | [24] | Hushur A, Manghnani M H and Narayan J 2009 J. Appl. Phys. 106 054317 | [25] | Davydov V Yu, Kitaev Yu E, Goncharuk I N and Smirnov A N et al 1998 Phys. Rev. B 58 12899 | [26] | Pong B J, Pan C J, Teng Y C, Chi G C, Li W H and Lee K C 1998 J. Appl. Phys. 83 5992 | [27] | Heinke H, Kirchner V, Einfeldt S and Hommel D 2000 Appl. Phys. Lett. 77 2145 | [28] | Chierchia R, B?ttcher T, Heinke H, Einfeldt S, Figge S and Hommel D 2003 J. Appl. Phys. 93 8918 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|