CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
High Lattice Match Growth of InAsSb Based Materials by Molecular Beam Epitaxy |
Yang Ren1, Rui-Ting Hao1**, Si-Jia Liu1, Jie Guo1, Guo-Wei Wang2,3, Ying-Qiang Xu2,3**, Zhi-Chuan Niu2,3 |
1Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology (Ministry of Education), Provincial Key Laboratory of Rural Energy Engineering, Institute of Solar Energy, Yunnan Normal University, Kunming 650092 2State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
Yang Ren, Rui-Ting Hao, Si-Jia Liu et al 2016 Chin. Phys. Lett. 33 128101 |
|
|
Abstract High lattice match growth of InAsSb based materials on GaSb substrates is demonstrated. The present results indicate that a stable substrate temperature and the optimal flux ratios are of critical importance in achieving a homogeneous InAsSb based material composition throughout the growth period. The quality of these epilayers is assessed using a high-resolution x-ray diffraction and atomic force microscope. The mismatch between the GaSb substrate and InAsSb alloy achieves almost zero, and the rms surface roughness of InAsSb alloy achieves around 1.7 ? over an area of 28 μm $\times$ 28 μm. At the same time, the mismatches between GaSb and InAs/InAs$_{0.73}$Sb$_{0.27}$ superlattices (SLs) achieve approximately 100 arcsec (75 periods) and zero (300 periods), with the surface rms roughnesses of InAs/InAs$_{0.73}$Sb$_{0.27}$ SLs around 1.8 ? (75 periods) and 2.1 ? (300 periods) over an area of 20 μm$\times$20 μm, respectively. After fabrication and characterization of the devices, the dynamic resistance of the n-barrier-n InAsSb photodetector near zero bias is of the order of 10$^{6}$ $\Omega\cdot$cm$^{2}$. At 77 K, the positive-intrinsic-negative photodetectors are demonstrated in InAsSb and InAs/InAsSb SL (75 periods) materials, exhibiting fifty-percent cutoff wavelengths of 3.8 μm and 5.1 μm, respectively.
|
|
Received: 04 July 2016
Published: 29 December 2016
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11474248, 61176127, 61006085, 61274013 and 61306013, the Key Program for International S&T Cooperation Projects of China under Grant No 2011DFA62380, and the Ph.D. Programs Foundation of the Ministry of Education of China under Grant No 20105303120002. |
|
|
[1] | Grein C H, Young P M and Ehrenreich H 1992 Appl. Phys. Lett. 61 2905 | [2] | Youngdale E R, Meyer J R, Hoffman C A, Bartoli F J, Grein C H, Young P M, Ehrenreich H, Miles R H and Chow D H 1994 Appl. Phys. Lett. 64 3160 | [3] | Grein C H, Garland J and Flatte M E 2009 J. Electron. Mater. 38 1800 | [4] | Rhiger D R 2011 J. Electron. Mater. 40 1815 | [5] | Donetsky D, Svensson S P, Vorobjev L E and Belenky G 2009 Appl. Phys. Lett. 95 212104 | [6] | Svensson S P, Donetsky D, Wang D, Hier H, Crowne F J and Belenky G 2011 J. Cryst. Growth 334 103 | [7] | Steenbergen E H, Connelly B C, Metcalfe G D, Shen H, Wraback M, Lubyshev D, Qiu Y, Fastenau J M, Liu A W K, Elhamri S, Cellek O O and Zhang H Y 2011 Appl. Phys. Lett. 99 251110 | [8] | Lackner D, Steger M, Thewalt M L W, Pitts O J, Cherng Y T, Watkins S P, Plis E and Krishna S 2012 J. Appl. Phys. 111 034507 | [9] | Ciesla C M, Murdin B N, Pidgeon C R, Stradling R A, Phillips C C, Livingstone M, Galbraith I, Jaroszynski D A, Langerak C J G M, Tang P J P and Pullin M J 1996 J. Appl. Phys. 80 2994 | [10] | Tran D, Sigel Jr G H and Bendow B 1984 J. Lightwave Technol. 2 566 | [11] | Schneider H, Maier T, Fleissner J, Walther M, Koidl P, Weimann G, Cabanski W, Finck M, Menger P, Rode W and Ziegler J 2005 Infrared Phys. Technol. 47 53 | [12] | Rogalski A 2011 Infrared Phys. Technol. 54 136 | [13] | Gautam N, Naydenkov M, Myers S, Barve A V, Plis E, Rotter T, Dawson L R and Krishna S 2011 Appl. Phys. Lett. 98 121106 | [14] | Khoshakhlagh A, Rodriguez J B, Plis E, Bishop G D, Sharma Y D, Kim H S, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 263504 | [15] | Plis E, Naydenkov M, Myers S, Klein B, Gautam N, Krishna S S, Smith E P, Johnson S and Krishna S 2013 Infrared Phys. Technol. 59 28 | [16] | Refaat T F, Abedin M N, Bhat I B and Xiao Y 2005 Opt. Eng. 44 120501 | [17] | Tsang W T, Chiu T H, Kisker D W and Ditzenberger J A 1985 Appl. Phys. Lett. 46 283 | [18] | Nguyen B M 2010 Dissertation Abstracts Int. 72-02 391 | [19] | Mohammedy F M and Deen M J 2009 J. Mater. Sci.: Mater. Electron. 20 1039 | [20] | Chang C A, Ludeke R, Chang L L and Esaki L 1977 Appl. Phys. Lett. 31 759 | [21] | Lee G S, Lo Y, Lin Y F, Bedair S M and Laidig W D 1985 Appl. Phys. Lett. 47 1219 | [22] | Neuberger M 1971 Handbook of Electronic Materials: 3-5 Semiconducting Compounds (New York: IFI/Plenum Data Co.) | [23] | Wei Y, Gin A, Razeghi M and Brown G J 2002 Appl. Phys. Lett. 80 3262 | [24] | Chiu T H, Tsang W T, Ditzenberger J A, Chu S N G and Van der Ziel J P 1986 J. Appl. Phys. 60 205 | [25] | Rodriguez J B, Christol P, Cerutti L, Chevrier F and Joullié A 2005 J. Cryst. Growth 274 6 | [26] | Schuler-Sandy T, Myers S, Klein B, Gautam N, Ahirwar P, Tian Z B, Rotter T, Balakrishnan G, Plis E and Krishna S 2012 Appl. Phys. Lett. 101 071111 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|