Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 128103    DOI: 10.1088/0256-307X/33/12/128103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Molecular Beam Epitaxy of Zero Lattice-Mismatch InAs/GaSb Type-II Superlattice
Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu**
Nano-Optoelectronics Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, BeiJing 100083
Cite this article:   
Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu et al  2016 Chin. Phys. Lett. 33 128103
Download: PDF(480KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Type-II InAs/GaSb superlattices made of 13 InAs monolayers (MLs) and 7 GaSb MLs are grown on GaSb substrates by solid source molecular beam epitaxy. To obtain lattice-matched structures, thin InSb layers are inserted between InAs and GaSb layers. We complete a series of experiments to investigate the influence of the InSb deposition time, V/III beam-equivalent pressure ratio and interruption time between each layer, and then characterize the superlattice (SL) structures with high-resolution x-ray diffraction and atomic force microscopy. The optimized growth parameters are applied to grow the 100-period SL structure, resulting in the full-width half-maximum of 29.55 arcsec for the first SL satellite peak and zero lattice-mismatch between the zero-order SL peak and the GaSb substrate peak.
Received: 08 August 2016      Published: 29 December 2016
PACS:  81.05.Ea (III-V semiconductors)  
  81.10.Pq (Growth in vacuum)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Supported by the National Basic Research Program of China under Grant Nos 2015CB351902, 2015CB932402 and 2012CB619203, the National Natural Science Foundation of China under Grant Nos 61177070, 11374295 and U1431231, and the National Key Research Program of China under Grant No 2011ZX01015-001.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/128103       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/128103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hai-Long Yu
Hao-Yue Wu
Hai-Jun Zhu
Guo-Feng Song
Yun Xu
[1]Simth D L and Mailhiot C 1987 J. Appl. Phys. 62 2545
[2]Nguyen B M, Hoffman D, Wei Y et al 2007 Appl. Phys. Lett. 90 231108
[3]Wei Y, Hood A, Yau H, Yazdanpanah V et al 2005 Appl. Phys. Lett. 86 091109
[4]Plis E, Rodriguez J B, Kim H S, Bishop G et al 2007 Appl. Phys. Lett. 91 133512
[5]Walther M, Schmitz J, Rehm R, Kopta S et al 2005 J. Cryst. Growth 278 156
[6]Chen J X, Zhou Y, Xu Z C et al 2013 J. Cryst. Growth 378 596
[7]Rhiger D R, Kvaas R E, Harris S F, Bornfreund R E et al 2007 Proc. SPIE 6542 654202
[8]Chen J X, Xu Q Q, Zhou Y et al 2011 Nanoscale Res. Lett. 6 635
[9]Satpati B, Rodriguez J B, Trampert A et al 2007 J. Cryst. Growth 301 889
[10]Khoshakhlagh A, Plis E, Myers S and Sharma Y D 2009 J. Cryst. Growth 311 1901
[11]Haugan H J, Brown G L and Grazulis L 2011 J. Vac. Sci. Technol. B 29 03C101
[12]Arikan B, Korkmaz M, Aslan B and Serincan U 2015 Thin Solid Films 589 813
[13]Rodriquez J B, Christol P, Cerutti L and Chevrier F 2005 J. Cryst. Growth 274 6
[14]Haugan H J, Grazulis L, Brown G J, Mahalingam K et al 2004 J. Cryst. Growth 261 471
[15]Plis E, Annamalai S and Posani K T 2006 J. Appl. Phys. 100 014510
[16]Zhang Y H, Ma W Q, Cao Y L and Huang J L 2011 IEEE J. Quantum Electron. 47 1475
[17]Arikan B, Korkmaz G and Suyolcu Y E 2013 Thin Solid Films 548 288
[18]Tahraoui A, Tomasini P, Lassabatere L et al 2000 Appl. Surf. Sci. 162 425
[19]Kaspi R, Steinshnider J, M Weimer et al 2001 J. Cryst. Growth 225 544
[20]Wen L, Gao F L, Zhang X N, Zhang S G et al 2014 J. Appl. Phys. 116 193508
[21]Gao F L, Wen L, Zhang S G, Li J L et al 2015 Thin Solid Films 597 25
[22]Bulent A and Melih K 2016 Appl. Surf. Sci. 362 244
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 128103
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 128103
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 128103
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 128103
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 128103
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 128103
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 128103
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 128103
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 128103
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 128103
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 128103
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 128103
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 128103
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 128103
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 128103
Viewed
Full text


Abstract