CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Molecular Beam Epitaxy of Zero Lattice-Mismatch InAs/GaSb Type-II Superlattice |
Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu** |
Nano-Optoelectronics Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, BeiJing 100083
|
|
Cite this article: |
Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu et al 2016 Chin. Phys. Lett. 33 128103 |
|
|
Abstract Type-II InAs/GaSb superlattices made of 13 InAs monolayers (MLs) and 7 GaSb MLs are grown on GaSb substrates by solid source molecular beam epitaxy. To obtain lattice-matched structures, thin InSb layers are inserted between InAs and GaSb layers. We complete a series of experiments to investigate the influence of the InSb deposition time, V/III beam-equivalent pressure ratio and interruption time between each layer, and then characterize the superlattice (SL) structures with high-resolution x-ray diffraction and atomic force microscopy. The optimized growth parameters are applied to grow the 100-period SL structure, resulting in the full-width half-maximum of 29.55 arcsec for the first SL satellite peak and zero lattice-mismatch between the zero-order SL peak and the GaSb substrate peak.
|
|
Received: 08 August 2016
Published: 29 December 2016
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
81.10.Pq
|
(Growth in vacuum)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant Nos 2015CB351902, 2015CB932402 and 2012CB619203, the National Natural Science Foundation of China under Grant Nos 61177070, 11374295 and U1431231, and the National Key Research Program of China under Grant No 2011ZX01015-001. |
|
|
[1] | Simth D L and Mailhiot C 1987 J. Appl. Phys. 62 2545 | [2] | Nguyen B M, Hoffman D, Wei Y et al 2007 Appl. Phys. Lett. 90 231108 | [3] | Wei Y, Hood A, Yau H, Yazdanpanah V et al 2005 Appl. Phys. Lett. 86 091109 | [4] | Plis E, Rodriguez J B, Kim H S, Bishop G et al 2007 Appl. Phys. Lett. 91 133512 | [5] | Walther M, Schmitz J, Rehm R, Kopta S et al 2005 J. Cryst. Growth 278 156 | [6] | Chen J X, Zhou Y, Xu Z C et al 2013 J. Cryst. Growth 378 596 | [7] | Rhiger D R, Kvaas R E, Harris S F, Bornfreund R E et al 2007 Proc. SPIE 6542 654202 | [8] | Chen J X, Xu Q Q, Zhou Y et al 2011 Nanoscale Res. Lett. 6 635 | [9] | Satpati B, Rodriguez J B, Trampert A et al 2007 J. Cryst. Growth 301 889 | [10] | Khoshakhlagh A, Plis E, Myers S and Sharma Y D 2009 J. Cryst. Growth 311 1901 | [11] | Haugan H J, Brown G L and Grazulis L 2011 J. Vac. Sci. Technol. B 29 03C101 | [12] | Arikan B, Korkmaz M, Aslan B and Serincan U 2015 Thin Solid Films 589 813 | [13] | Rodriquez J B, Christol P, Cerutti L and Chevrier F 2005 J. Cryst. Growth 274 6 | [14] | Haugan H J, Grazulis L, Brown G J, Mahalingam K et al 2004 J. Cryst. Growth 261 471 | [15] | Plis E, Annamalai S and Posani K T 2006 J. Appl. Phys. 100 014510 | [16] | Zhang Y H, Ma W Q, Cao Y L and Huang J L 2011 IEEE J. Quantum Electron. 47 1475 | [17] | Arikan B, Korkmaz G and Suyolcu Y E 2013 Thin Solid Films 548 288 | [18] | Tahraoui A, Tomasini P, Lassabatere L et al 2000 Appl. Surf. Sci. 162 425 | [19] | Kaspi R, Steinshnider J, M Weimer et al 2001 J. Cryst. Growth 225 544 | [20] | Wen L, Gao F L, Zhang X N, Zhang S G et al 2014 J. Appl. Phys. 116 193508 | [21] | Gao F L, Wen L, Zhang S G, Li J L et al 2015 Thin Solid Films 597 25 | [22] | Bulent A and Melih K 2016 Appl. Surf. Sci. 362 244 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|