Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 110202    DOI: 10.1088/0256-307X/33/11/110202
GENERAL |
Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation
Ming-Zhan Song, Xu Qian, Song-He Song**
College of Science and State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073
Cite this article:   
Ming-Zhan Song, Xu Qian, Song-He Song 2016 Chin. Phys. Lett. 33 110202
Download: PDF(632KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the structure-preserving numerical algorithm of the Degasperis–Procesi equation which can be transformed into a bi-Hamiltonian form using the discrete variational derivative method. Based on two different space discretization methods, the Fourier pseudospectral method and the wavelet collocation method, we develop two modified structure-preserving schemes under the periodic boundary condition. These proposed schemes are proved to preserve the Hamiltonian invariants theoretically and numerically. Meanwhile, the numerical results confirm that they can simulate the propagation of solitons effectively for a long time.

Received: 26 May 2016      Published: 28 November 2016
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Sa (Functional analysis)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Jh (Numerical differentiation and integration)  
Fund:

Supported by the National Natural Science Foundation of China under Grant Nos 11571366 and 11501570, and the Open Foundation of State Key Laboratory of High Performance Computing of China.

TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/110202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/110202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming-Zhan Song
Xu Qian
Song-He Song
[1] Degasperis A and Procesi M 1999 Asymptotic Integrability: Symmetry and Perturbation Theory (Hackensack: World Scientific Publisher)
[2] Chen Y M, Song S H and Zhu H J 2012 Appl. Math. Comput. 218 5552
[3] Liu X Z, Yu J and Ren B 2015 Chin. Phys. B 24 080202
[4] Hoel H A 2007 Electron. J. Differ. Eq. 2007 1
[5] Coclite G M, Karlsen K H and Risebro N H 2007 IMA J. Numer. Anal. 28 80
[6] Xu Y and Shu C W 2011 Comput. Phys. Commun. 10 474
[7] Huang Y, Yi N and Liu H 2014 Methods Appl. Anal. 21 83
[8] Feng B F and Liu Y 2009 J. Comput. Phys. 228 7805
[9] Yu C and Sheu T W 2013 J. Comput. Phys. 236 493
[10] Xia Y 2014 J. Sci. Comput. 61 584
[11] Yousif M A, Mahmood B A and Easif F H 2015 Am. J. Comput. Math. 5 267
[12] Furihata D and Matsuo T 2010 Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations (Florida: CRC Press)
[13] Miyatake Y, Yaguchi T and Matsuo T 2012 J. Comput. Phys. 231 3963
[14] Miyatake Y and Matsuo T 2012 J. Comput. Appl. Math. 236 3728
[15] Geng X G and Wang H 2014 Chin. Phys. Lett. 31 070202
[16] Zhang H, Song S H, Chen X D and Zhou W E 2014 Chin. Phys. B 23 070208
[17] Zhang H, Song S H, Zhou W E and Chen X D 2014 Chin. Phys. B 23 080204
[18] Jiang C L and Sun J Q 2014 Chin. Phys. B 23 050202
[19] Qian X, Chen Y M, Gao E and Song S H 2012 Chin. Phys. B 21 120202
[20] Zhu H, Tang L, Song S, Tang Y and Wang D 2010 J. Comput. Phys. 229 2550
[21] Wang Y S, Wang Bin and Qin M Z 2008 Sci. Chin. Math. 51 2115
[22] Zhu H, Song S and Tang Y 2011 Comput. Phys. Commun. 182 616
[23] Hone A N and Wang J P 2003 Inverse Probl. 19 129
[24] Celledoni E, Grimm V, McLachlan R I, McLaren D, O Neale D, Owren B and Quispel G 2012 J. Comput. Phys. 231 6770
Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 110202
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 110202
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 110202
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 110202
[5] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 110202
[6] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 110202
[7] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 110202
[8] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 110202
[9] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 110202
[10] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 110202
[11] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 110202
[12] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 110202
[13] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 110202
[14] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 110202
[15] GENG Xian-Guo, WANG Hui. A Hierarchy of New Nonlinear Evolution Equations and Their Bi-Hamiltonian Structures[J]. Chin. Phys. Lett., 2014, 31(07): 110202
Viewed
Full text


Abstract