Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 110203    DOI: 10.1088/0256-307X/33/11/110203
GENERAL |
A Chain of Type II and Its Exact Solutions
Yu Zhang, Ru-Guang Zhou**
School of Mathematics and Statistics, Jiangsu Normal University Xuzhou 221116
Cite this article:   
Yu Zhang, Ru-Guang Zhou 2016 Chin. Phys. Lett. 33 110203
Download: PDF(284KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The exact solutions of a chain of type II are investigated. The chain of type II is first transformed to an integrable differential-difference equation, which has the Kaup–Newell spectral problem as its continuous spatial spectral problem and a Darboux transformation of the Kaup–Newell equation as its discrete temporal spectral problem. Then, with these spectral problems, a Darboux transformation of the transformed equation is constructed. Finally, as an application of the Darboux transformation, an exact solution of the transformed equation and thus the chain of type II are presented.
Received: 30 August 2016      Published: 28 November 2016
PACS:  02.30.Ik (Integrable systems)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11271168 and 11671177, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Innovation Project of the Graduate Students in Jiangsu Normal University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/110203       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/110203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Zhang
Ru-Guang Zhou
[1]Adler V E and Shabat A B 1997 Theor. Math. Phys. 111 647
[2]Adler V E and Shabat A B 1997 Theor. Math. Phys. 112 935
[3]Toda M 1981 Theory of Nonlinear Lattices (New York: Springer)
[4]Suris Y B 2003 The Problem of Integrable Discretization: Hamiltonian Approach (Basel: Birkh?user)
[5]Ruijsenaars S N M 1990 Commun. Math. Phys. 133 217
[6]Zhou R G and Chen J 2015 Commun. Theor. Phys. 63 1
[7]Cao C W and Yang X 2008 J. Phys. A 41 025203
[8]Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformation in Integrable Systems (Dordrecht: Springer)
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 110203
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 110203
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 110203
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 110203
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 110203
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 110203
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 110203
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 110203
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 110203
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 110203
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 110203
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 110203
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 110203
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 110203
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 110203
Viewed
Full text


Abstract