Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 110201    DOI: 10.1088/0256-307X/33/11/110201
GENERAL |
Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation
Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He**
Department of Mathematics, Ningbo University, Ningbo 315211
Cite this article:   
Chao Qian, Ji-Guang Rao, Yao-Bin Liu et al  2016 Chin. Phys. Lett. 33 110201
Download: PDF(2320KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Breathers and rogue waves as exact solutions of the three-dimensional Kadomtsev–Petviashvili equation are obtained via the bilinear transformation method. The breathers in three dimensions possess different dynamics in different planes, such as growing and decaying periodic line waves in the $(x,y)$, $(x,z)$ and $(y,t)$ planes. Rogue waves are localized in time, and are obtained theoretically as a long wave limit of breathers with indefinitely larger periods. It is shown that the rogue waves possess growing and decaying line profiles in the $(x,y)$ or $(x,z)$ plane, which arise from a constant background and then retreat back to the same background again.
Received: 30 July 2016      Published: 28 November 2016
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11271210, and the K. C. Wong Magna Fund in Ningbo University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/110201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/110201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao Qian
Ji-Guang Rao
Yao-Bin Liu
Jing-Song He
[1]Pelinovsky E and Kharif C 2008 Extreme Ocean Waves (Berlin: Springer)
[2]Shats M, Punzmann H and Xia H 2010 Phys. Rev. Lett. 104 104503
[3]Onorato M, Residori S, Bortolozzo U, Montina A and Arecchi F T 2013 Phys. Rep. 528 47
[4]Chabchoub A, Hoffmann N P and Akhmediev N 2011 Phys. Rev. Lett. 106 204502
[5]Chabchoub A, Hoffmann N, Onorato M and Akhmediev N 2012 Phys. Rev. X 2 011015
[6]Bailung H, Sharma S K and Nakamura Y 2011 Phys. Rev. Lett. 107 255005
[7]Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[8]Kharif C, Pelinovsky E and Slunyaev A 2009 Rogue Waves in the Ocean (Berlin: Springer)
[9]Erkintalo M, Genty G and Dudley J M 2009 Opt. Lett. 34 2468
[10]Pierangeli D, Di Mei F, Conti C, Agranat A J and DelRe E 2015 Phys. Rev. Lett. 115 093901
[11]Peregrine D H 1983 J. Aust. Math. Soc. Ser. B 25 16
[12]Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[13]Wang X, Li Y Q and Chen Y 2014 Wave Motion 51 1149
[14]Duan L, Yang Z Y, Liu C and Yang W L 2016 Chin. Phys. Lett. 33 010501
[15]Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[16]Liu C, Yang Z Y, Zhao L C and Wang W L 2014 Phys. Rev. A 89 055803
[17]Guo B L, Ming L L and Liu Q P 2012 Phys. Rev. E 85 026607
[18]He J S, Zhang H R, Wang L H, Porsezian K and Fokas A S 2013 Phys. Rev. E 87 052914
[19]Xu S W, He J S, Cheng Y and Porseizan K 2015 Math. Method. Appl. Sci 38 1106
[20]He J S, Xu S W, Porsezian K, Cheng Y and Tchofo D P 2016 Phys. Rev. E 93 062201
[21]Chen S H, Soto-Crespo J M, Baronio F, Grelu P and Mihalache D 2016 Opt. Express 24 15251
[22]Baronio F, Wabnitz S and Kodama Y 2016 Phys. Rev. Lett. 116 173901
[23]Pioger P H, Couderc V, Lefort L, Barthelemy A, Baronio F, De Angelis C, Min Y, Quiring V and Sohler W 2002 Opt. Lett. 27 2182
[24]Tzortzakis S, Sudrie L, Franco M, Prade B, Mysyrowicz M, Couairon A and Bergé L 2001 Phys. Rev. Lett. 87 213902
[25]Eisenberg H S, Morandotti R, Silberberg Y, Bar-Ad S, Ross D and Aitchison J S 2001 Phys. Rev. Lett. 87 043902
[26]Ranka J K, Schirmer R W and Gaeta A L 1996 Phys. Rev. Lett. 77 3783
[27]Liu X, Qian L J and Wise F W 1999 Phys. Rev. Lett. 82 4631
[28]Kadomtsev B B and Petviashvili V I 1970 Soy. Phys. Dokl. 15 539
[29]Ablowitz M J and Segur H 1979 J. Fluid. Mech. 92 69
[30]Infeld E and Rowlands G 1979 Acta Phys. Pol. A 56 329
[31]Kunin I A 1975 Teoria Uprugykh Sryeds Mikrostrukturoy (Moscow: Moskva Izdat)
[32]Kuznietsov E A and Musher C L 1986 Zh. Eksp. Teor. Phys. 91 1605
Kuznietsov E A and Musher C L 1986 J. Exp. Theor. Phys. 64 947
[33]Infeld E and Rowlands G 1992 Nonlinear Waves, Solitons and Chaos (Cambridge: Cambridge University Press) chaps 5 and 8
[34]Senatorski A and Infeld E 1996 Phys. Rev. Lett. 77 2855
[35]Gao X Y 2015 Ocean Eng. 96 245
[36]Ma W X, Jabbar A A and Asaad M G 2011 Appl. Math. Comput. 217 10016
[37]Khalfallah M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1169
[38]Sinelshchikov D I 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3235
[39]Lou S Y 2015 Stud. Appl. Math. 134 372
[40]Li Y Q, Chen J C, Chen Y and Lou S Y 2014 Chin. Phys. Lett. 31 010201
[41]Lou S Y, Feng B F and Yao R X 2016 Wave Motion 65 17
[42]Ji A C, Sun Q, Xie X C and Liu W M 2009 Phys. Rev. Lett. 102 023602
[43]Qi R, Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett. 102 185301
[44]Ling L M and Liu Q P 2011 J. Math. Phys. 52 053513
[45]Ohta Y and Yang J K 2012 Phys. Rev. E 86 036604
[46]Ohta Y and Yang J K 2013 J. Phys. A 46 105202
[47]Rao J G, Wang L H, Zhang Y and He J S 2015 Commun. Theor. Phys. 64 605
[48]Gaillard P 2016 Ann. Phys. 367 1
[49]Dubard P and Matveev V B 2013 Nonlinearity 26 R93
[50]Dubard P and Matveev V B 2011 Hazards Earth Syst. Sci. 11 667
[51]Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[52]Tajiri M and Arai T 1999 Phys. Rev. E 60 2297
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 110201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 110201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 110201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 110201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 110201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 110201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 110201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 110201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 110201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 110201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 110201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 110201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 110201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 110201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 110201
Viewed
Full text


Abstract