Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 100501    DOI: 10.1088/0256-307X/33/10/100501
GENERAL |
Denoising Nonlinear Time Series Using Singular Spectrum Analysis and Fuzzy Entropy
Jian Jiang1, Hong-Bo Xie2**
1School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094
2ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane 4000, Australia
Cite this article:   
Jian Jiang, Hong-Bo Xie 2016 Chin. Phys. Lett. 33 100501
Download: PDF(1135KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey–Glass attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.
Received: 09 June 2016      Published: 27 October 2016
PACS:  05.45.Tp (Time series analysis)  
  05.45.Ac (Low-dimensional chaos)  
  95.75.Wx (Time series analysis, time variability)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/100501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Jiang
Hong-Bo Xie
[1]Vautard R, Yiou P and Ghil M 1992 Physica D 58 95
[2]Xie H B, Guo T, Sivakumar B, Liew A W C and Dokos S 2014 Proc. R. Soc. A 470 210409
[3]Hossein H 2007 J. Data Sci. 5 239
[4]Pilgram B and Schappacher W 1998 Int. J. Bifurcation Chaos Appl. Sci. Eng. 8 571
[5]Alharbi N and Hassani H 2016 J. Franklin Inst. 353 1
[6]Xie H B, Chen W, He W X and Liu H 2011 Appl. Soft Comput. 11 2871
[7]Xie H B, Guo J Y and Zheng Y P 2010 Ann. Biomed. Eng. 38 1483
[8]Kong D R and Xie H B 2011 Chin. Phys. Lett. 28 090502
[9]Xie H B and Dokos S 2013 Chaos 23 023131
[10]Farmer J D and Sidorowich J J 1987 Phys. Rev. Lett. 59 845
[11]Lim T P and Puthusserypady S 2007 Phys. Lett. A 365 309
[12]Casdagli M 1989 Physica D 35 335
[13]Li H C and Zhang J S 2005 Chin. Phys. Lett. 22 2776
[14]Cui W Z, Zhu C C, Bao W X and Liu J H 2004 Acta Phys. Sin. 53 3303 (in Chinese)
[15]Yang Z L, Tian Y, Zhang G T and Lin K Y 2005 Power Syst. Technol. 29 31 (in Chinese)
[16]Yang Z L, Feng Y, Xiong D F, Chen X and Zhang J 2015 Trans. Tianjing Univ. 21 299
Related articles from Frontiers Journals
[1] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 100501
[2] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 100501
[3] Sheng-Li Zhu, Lu Gan. Specific Emitter Identification Based on Visibility Graph Entropy[J]. Chin. Phys. Lett., 2018, 35(3): 100501
[4] Yi Ji, Hong-Bo Xie. Generalized Multivariate Singular Spectrum Analysis for Nonlinear Time Series De-Noising and Prediction[J]. Chin. Phys. Lett., 2017, 34(12): 100501
[5] Sheng-Li Zhu, Lu Gan. Chaos Identification Based on Component Reordering and Visibility Graph[J]. Chin. Phys. Lett., 2017, 34(5): 100501
[6] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 100501
[7] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 100501
[8] ZHANG Ang-Hui, LI Xiao-Wen, SU Gui-Feng, ZHANG Yi. A Multifractal Detrended Fluctuation Analysis of the Ising Financial Markets Model with Small World Topology[J]. Chin. Phys. Lett., 2015, 32(09): 100501
[9] HAO Qing-Yang, JIN Ning-De, HAN Yun-Feng, GAO Zhong-Ke, ZHAI Lu-Sheng. Multi-Scale Time Asymmetry for Detecting the Breakage of Slug Flow Structure[J]. Chin. Phys. Lett., 2014, 31(12): 100501
[10] QU Hua, MA Wen-Tao, ZHAO Ji-Hong, CHEN Ba-Dong. Kernel Least Mean Kurtosis Based Online Chaotic Time Series Prediction[J]. Chin. Phys. Lett., 2013, 30(11): 100501
[11] FAN Chun-Ling, JIN Ning-De, CHEN Xiu-Ting, GAO Zhong-Ke. Multi-Scale Permutation Entropy: A Complexity Measure for Discriminating Two-Phase Flow Dynamics[J]. Chin. Phys. Lett., 2013, 30(9): 100501
[12] ZHANG Xin-Wang, JIN Ning-De, GAO Zhong-Ke, ZHAI Lu-Sheng . Local Property of Recurrence Network for Investigating Gas-Liquid Two-Phase Flow Characteristics[J]. Chin. Phys. Lett., 2013, 30(5): 100501
[13] JIANG Jian, WANG Ru, Pezeril Michel, Wang Qiuping Alexandre. Long Division Unites or Long Union Divides: a Model for Social Network Evolution[J]. Chin. Phys. Lett., 2013, 30(3): 100501
[14] YAN Chuan-Kui, WANG Ru-Bin. Non-identical Neural Network Synchronization Study Based on an Adaptive Learning Rule of Synapses[J]. Chin. Phys. Lett., 2012, 29(9): 100501
[15] QU Jing-Yi, and WANG Ru-Bin. Dynamics of a Cortical Neural Network Based on a Simple Model[J]. Chin. Phys. Lett., 2012, 29(8): 100501
Viewed
Full text


Abstract