Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 097101    DOI: 10.1088/0256-307X/32/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures
ZHOU Shu-Xing1, QI Ming1**, AI Li-Kun1, XU An-Huai1, WANG Li-Dan2, DING Peng2, JIN Zhi2
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2Microwave Devices and Integrated Circuits Department, Key Laboratory of Microelectronics Device and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
ZHOU Shu-Xing, QI Ming, AI Li-Kun et al  2015 Chin. Phys. Lett. 32 097101
Download: PDF(1116KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The InGaAs/InAlAs/InP high electron mobility transistor (HEMT) structures with lattice-matched and pseudomorphic channels are grown by gas source molecular beam epitaxy. Effects of Si δ-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si δ-doping concentration (Nd) is about 5.0×1012 cm?2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission electron microscopy. An InGaAs/InAlAs/InP HEMT device with a gate length of 100 nm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT=249 GHz and fmax>400 GHz.
Received: 17 April 2015      Published: 02 October 2015
PACS:  71.20.Nr (Semiconductor compounds)  
  71.55.Eq (III-V semiconductors)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  2.10.Fk  
  73.40.-c (Electronic transport in interface structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/097101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/097101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Shu-Xing
QI Ming
AI Li-Kun
XU An-Huai
WANG Li-Dan
DING Peng
JIN Zhi
[1] Mei X et al 2015 IEEE Electron Device Lett. 36 327
[2] Leong K M K H et al 2015 IEEE Microwave Wireless Compon. Lett. 25 397
[3] Li H O et al 2011 Chin. Phys. B 20 068502
[4] Huang J et al 2010 Chin. Phys. Lett. 27 118502
[5] Tessmann A et al 2014 IEEE Int. Microw. Symp. Dig. p 1
[6] Deal W R et al 2014 IEEE Int. Microw. Symp. Dig. p 1
[7] Radisic V et al 2012 IEEE Trans. Microwave Theory Tech. 60 724
[8] Watanabe K and Yokoyama H 2001 J. Appl. Phys. 89 1696
[9] Murata K et al 2004 IEEE J. Solid-State Circuits 39 207
[10] Shinohara K et al 2004 IEEE Electron Device Lett. 25 241
[11] Skuras E et al 2001 J. Vac. Sci. Technol. B 19 1524
[12] Pan N et al 1991 Appl. Phys. Lett. 59 458
[13] Brown A S et al 1991 Appl. Phys. Lett. 59 3610
[14] Sagisaka H et al 2006 J. Vac. Sci. Technol. B 24 2668
[15] Watanabe I et al 2003 J. Cryst. Growth 251 90
[16] Zhao L et al 2013 Mater. Lett. 106 222
[17] Watanabe I et al 2001 J. Vac. Sci. Technol. B 19 1515
[18] Sakaki H et al 1987 Appl. Phys. Lett. 51 1934
[19] Ramvall P et al 1998 J. Appl. Phys. 84 2112
Related articles from Frontiers Journals
[1] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 097101
[2] Quanyin Tang, Ji-Hui Yang, Zhi-Pan Liu, and Xin-Gao Gong. Directly Determining the Interface Structure and Band Offset of a Large-Lattice-Mismatched CdS/CdTe Heterostructure[J]. Chin. Phys. Lett., 2020, 37(9): 097101
[3] M. Kr. Deka, A. N. Dev. Supersonic Shock Wave with Landau Quantization in a Relativistic Degenerate Plasma[J]. Chin. Phys. Lett., 2020, 37(1): 097101
[4] Yan Gong, Jingwen Guo, Jiaheng Li, Kejing Zhu, Menghan Liao, Xiaozhi Liu, Qinghua Zhang, Lin Gu, Lin Tang, Xiao Feng, Ding Zhang, Wei Li, Canli Song, Lili Wang, Pu Yu, Xi Chen, Yayu Wang, Hong Yao, Wenhui Duan, Yong Xu, Shou-Cheng Zhang, Xucun Ma, Qi-Kun Xue, Ke He. Experimental Realization of an Intrinsic Magnetic Topological Insulator[J]. Chin. Phys. Lett., 2019, 36(7): 097101
[5] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 097101
[6] Ying-Xi Niu, Xiao-Yan Tang, Ren-Xu Jia, Ling Sang, Ji-Chao Hu, Fei Yang, Jun-Min Wu, Yan Pan, Yu-Ming Zhang. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer[J]. Chin. Phys. Lett., 2018, 35(7): 097101
[7] Gaoyuan Jiang, Yang Feng, Weixiong Wu, Shaorui Li, Yunhe Bai, Yaoxin Li, Qinghua Zhang, Lin Gu, Xiao Feng, Ding Zhang, Canli Song, Lili Wang, Wei Li, Xu-Cun Ma, Qi-Kun Xue, Yayu Wang, Ke He. Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2018, 35(7): 097101
[8] Hui-Xiong Deng, Zhi-Gang Song, Shu-Shen Li, Su-Huai Wei, Jun-Wei Luo. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and $Z_{2}$ Topological Insulator[J]. Chin. Phys. Lett., 2018, 35(5): 097101
[9] Ya-Wei Zhang, Kai-Ke Yang, Hui-Xiong Deng. Structural Phase Transition and a Mutation of Electron Mobility in Zn$_{x}$Cd$_{1-x}$O Alloys[J]. Chin. Phys. Lett., 2018, 35(5): 097101
[10] Yue-Yu Zhang, Shiyou Chen, Peng Xu, Hongjun Xiang, Xin-Gao Gong, Aron Walsh, Su-Huai Wei. Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH$_{3}$NH$_{3}$PbI$_{3}$$^*$[J]. Chin. Phys. Lett., 2018, 35(3): 097101
[11] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 097101
[12] Peng-Xian Lu, Rui-Xia Zhao. Electronic Structure and Thermoelectric Power Factor of Na$_{x}$CoO$_{2}$ from First-Principles Calculation[J]. Chin. Phys. Lett., 2017, 34(3): 097101
[13] De-Gang Zhao, De-Sheng Jiang, Ling-Cong Le, Jing Yang, Ping Chen, Zong-Shun Liu, Jian-Jun Zhu, Li-Qun Zhang. Performance Improvement of GaN-Based Violet Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(1): 097101
[14] A. Stashans, K. Rivera. Electronic and Magnetic Properties of Co- and Mn-codoped ZnO by Density Functional Theory[J]. Chin. Phys. Lett., 2016, 33(09): 097101
[15] SHEN Hua-Jun, TANG Ya-Chao, PENG Zhao-Yang, DENG Xiao-Chuan, BAI Yun, WANG Yi-Yu, LI Cheng-Zhan, LIU Ke-An, LIU Xin-Yu. Fabrication and Characterization of 1700 V 4H-SiC Vertical Double-Implanted Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(12): 097101
Viewed
Full text


Abstract