Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 096801    DOI: 10.1088/0256-307X/32/9/096801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics
XIANG Lang1,2, WU Jian3, MA Shuang-Ying1,2, WANG Fang1,2, ZHANG Kai-Wang1,2**
1School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105
2Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105
3Beijing Computational Science Research Center, Beijing 100084
Cite this article:   
XIANG Lang, WU Jian, MA Shuang-Ying et al  2015 Chin. Phys. Lett. 32 096801
Download: PDF(726KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Molecular dynamics simulations are performed to study the nanoindentation models of monolayer suspended graphene and graphyne. Fullerenes are selected as indenters. Our results show that Young's modulus of monolayer-thick graphyne is almost half of that of graphene, which is estimated to be 0.50 TPa. The mechanical properties of graphene and graphyne are different in the presence of strain. A pre-tension has an important effect on the mechanical properties of a membrane. Both the pre-tension and Young's modulus plots demonstrate index behavior. The toughness of graphyne is stronger than that of graphene due to Young's modulus magnitude. Young's moduli of graphene and graphyne are almost independent of the size ratio of indenter to membrane.
Received: 30 April 2015      Published: 02 October 2015
PACS:  68.65.Pq (Graphene films)  
  68.35.bp (Fullerenes)  
  62.25.-g (Mechanical properties of nanoscale systems)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  81.05.U- (Carbon/carbon-based materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/096801       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/096801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIANG Lang
WU Jian
MA Shuang-Ying
WANG Fang
ZHANG Kai-Wang
[1] Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
[2] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[3] Balandin A A 2011 Nat. Mater. 10 569
[4] Yang Y L and Lu Y 2014 Chin. Phys. B 23 106501
[5] Frank I W, Tanenbaum D M, Van der Zande A M and McEuen P L 2007 J. Vac. Sci. Technol. B 25 2558
[6] Baughman R H, Eckhardt H and Kertesz M 1987 J. Chem. Phys. 87 6687
[7] Pan L D, Zhang L Z, Song B Q, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 173102
[8] Cranford S W and Buehler M J 2011 Carbon 49 4111
[9] Ouyang T, Chen Y, Liu L M, Xie Y, Wei X and Zhong J X 2012 Phys. Rev. B 85 235436
[10] Long M, Tang L, Wang D, Li Y and Shuai Z 2011 ACS Nano 5 2593
[11] Srinivasu K and Ghosh S K 2012 J. Phys. Chem. C 116 5951
[12] Zhang H, Zhao M, He X, Wang Z, Zhang X and Liu X 2011 J. Phys. Chem. C 115 8845
[13] Kou J, Zhou X, Lu H, Wu F and Fan J 2014 Nanoscale 6 1865
[14] Hu X J, Zheng B L, Hu T Y, Yang B, He P F and Yue Z F 2014 Acta Phys. Sin. 63 176201 (in Chinese)
[15] Li X and Bhushan B 2002 Mater. Charact. 48 11
[16] Lemoine P, Quinn J P, Maguire P D, Zhao J F and McLaughlin J A 2007 Appl. Surf. Sci. 253 6165
[17] Suk J W, Murali S, An J and Ruoff R S 2012 Carbon 50 2220
[18] Lui C H, Liu L, Mak K F, Flynn G W and Heinz T F 2009 Nature 462 339
[19] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[20] Plimpton S 1995 J. Comput. Phys. 117 1
[21] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[22] Wan K T, Guo S and Dillard D A 2003 Thin Solid Films 425 150
[23] Komaragiri U, Begley M R and Simmonds J G 2005 J. Appl. Mech. 72 203
[24] Begley M R and Mackin T J 2004 J. Mech. Phys. Solids 52 2005
[25] Tan X J, Wu J, Zhang K W, Peng X Y, Sun L Z and Zhong J X 2013 Appl. Phys. Lett. 102 071908
[26] Kang J, Li J, Wu F, Li S S and Xia J B 2011 J. Phys. Chem. C 115 20466
[27] Peng Q, Ji W and De S 2012 Phys. Chem. Chem. Phys. 14 13385
[28] Ansari R, Mirnezhad M, Rouhi H and Faghihnasiri M 2013 J. Nanostruct. 3 33
[29] Pei Q X, Zhang Y W and Shenoy V B 2010 Carbon 48 898
[30] Wei Y, Wu J, Yin H, Shi X, Yang R and Dresselhaus M 2012 Nat. Mater. 11 759
[31] Li Y, Datta D, Li Z and Shenoy V B 2014 Comput. Mater. Sci. 83 212
[32] Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S and Ren Z F 2006 Nature 439 281
Related articles from Frontiers Journals
[1] Jie Jiang, Long Yan, and Haiping Fang. Effect of Oxide Content of Graphene Oxide Membrane on Remarkable Adsorption for Calcium Ions[J]. Chin. Phys. Lett., 2021, 38(10): 096801
[2] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 096801
[3] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 096801
[4] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 096801
[5] Gang Li, Hong-Wei Cheng, Li-Fang Guo, Kai-Ying Wang, Zai-Jun Cheng. An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 096801
[6] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 096801
[7] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 096801
[8] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 096801
[9] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 096801
[10] XIE Nan, GONG Hui-Qi, ZHOU Zhi, GUO Xiao-Dong, YAN Shi-Chao, SUN Qian, XING Sirui, WU Wei, PEI Shin-shem, BAO Jiming, SHAN Xin-Yan, GUO Yang, LU Xing-Hua . Visualization of a Maze-Like Reconstruction of Graphene on a Copper Surface at the Atomic Scale[J]. Chin. Phys. Lett., 2013, 30(5): 096801
[11] WANG Wen-Rong, LIANG Chen, LI Tie, YANG Heng, LU Na, WANG Yue-Lin. Graphene Domains Synthesized on Electroplated Copper by Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(2): 096801
[12] HUANG Qing-Song, GUO Li-Wei, WANG Wen-Jun, WANG Gang, WANG Wan-Yan, JIA Yu-Ping, LIN Jing -Jing, LI Kang, CHEN Xiao-Long. Raman Spectrum of Epitaxial Graphene on SiC (0001) by Pulsed Electron Irradiation[J]. Chin. Phys. Lett., 2010, 27(4): 096801
Viewed
Full text


Abstract