Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 096501    DOI: 10.1088/0256-307X/32/9/096501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Low Thermal Conductivity of Paperclip-Shaped Graphene Superlattice Nanoribbons
LU Xing, ZHONG Wei-Rong**
Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, Guangzhou 510632
Cite this article:   
LU Xing, ZHONG Wei-Rong 2015 Chin. Phys. Lett. 32 096501
Download: PDF(823KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We design some graphene superlattice structures with ultra-low thermal conductivity 121 W/mK, which is only 6% of the straight graphene nanoribbons. The thermal conductivity of graphene superlattice nanoribbons (GSNRs) is investigated by using molecular dynamics simulations. It is reported that the thermal conductivity of graphene superlattice nanoribbons is significantly lower than that of the straight graphene nanoribbons (GNRs). Compared with the phonon spectra of straight GNRs, GSNRs have more forbidden bands. The overlap of phonon spectra between two supercells is shrinking.
Received: 01 June 2015      Published: 02 October 2015
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.Rc (Phonons in graphene)  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/096501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/096501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Xing
ZHONG Wei-Rong
[1] Ghosh S et al 2010 Nat. Mater. 9 555
[2] Balandin A A 2011 Nat. Mater. 10 569
[3] Williams J R, DiCarlo L and Marcus C M 2007 Science 317 638
[4] Lee C et al 2008 Science 321 385
[5] Zheng H et al 2012 Appl. Phys. Lett. 100 093104
[6] Xie Z X, Chen K Q and Duan W 2011 J. Phys.: Condens. Matter 23 315302
[7] Yang N et al 2012 Appl. Phys. Lett. 100 093107
[8] Zhong W R et al 2011 Appl. Phys. Lett. 98 113107
[9] Tan S H et al 2013 Carbon 65 181
[10] Yang L et al 2014 arXiv:1407.5885 [cond-mat.mtrl-sci]
[11] Yang L, Yang L and Li B 2014 Nano Lett. 14 1734
[12] Cahill D G et al 2003 J. Appl. Phys. 93 793
[13] Yang W et al 2013 Nat. Mater. 12 792
[14] Ju L et al 2014 Nat. Nanotechnol. 9 348
[15] Shi Z et al 2014 Nat. Phys. 10 743
[16] Jiang J W, Wang J S and Wang B S 2011 Appl. Phys. Lett. 99 043109
[17] Liu L, Feng Y P and Shen Z X 2003 Phys. Rev. B 68 104102
[18] Xue J et al 2011 Nat. Mater. 10 282
[19] Ouyang T et al 2009 Europhys. Lett. 88 28002
[20] Brenner D W 1990 Phys. Rev. B 42 9458
[21] Hu J, Ruan X and Chen Y P 2009 Nano Lett. 9 2730
[22] Wu G and Li B 2007 Phys. Rev. B 76 085424
[23] Rafii-Tabar H 2008 Computational Physics of Carbon Nanotubes (New York: Cambridge University Press)
[24] Zhang H, Lee G and Cho K 2011 Phys. Rev. B 84 115460
[25] Lindsay L, Broido D A and Mingo N 2010 Phys. Rev. B 82 115427
[26] Ghosh S et al 2008 Appl. Phys. Lett. 92 151911
Related articles from Frontiers Journals
[1] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 096501
[2] Vali Dalouji, Dariush Mehrparvar, Shahram Solaymani, Sahar Rezaee. Effect of Nickel Distributions Embedded in Amorphous Carbon Films on Transport Properties[J]. Chin. Phys. Lett., 2018, 35(2): 096501
[3] Deyan Sun, Cheng Shang, Zhipan Liu, Xingao Gong. Intrinsic Features of an Ideal Glass[J]. Chin. Phys. Lett., 2017, 34(2): 096501
[4] WEI Liang, XU Zhi-Cheng, ZHENG Dong-Qin, ZHANG Wei, ZHONG Wei-Rong. Heat Transport in Double-Bond Linear Chains of Fullerenes[J]. Chin. Phys. Lett., 2015, 32(07): 096501
[5] CHEN Xiao-Ming, HUO Kai-Tuo, LIU Peng. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix[J]. Chin. Phys. Lett., 2014, 31(1): 096501
[6] PAN Rui-Qin, XU Zi-Jian, DAI Cui-Xia. Thermal Conductivity of the Partly Covered Inner Tube in a Double-Walled Carbon Nanotube with Varied Coverage Ratios[J]. Chin. Phys. Lett., 2014, 31(1): 096501
[7] PENG Chun, ZHANG Hong, CHENG Xin-Lu. Path Integral Monte Carlo Study of X@C50 [X=H2, He, Ne, Ar][J]. Chin. Phys. Lett., 2013, 30(11): 096501
[8] LÜ, Yong-Jun**. Enhanced Surface Premelting of Ni90Si10 Nanoparticles[J]. Chin. Phys. Lett., 2012, 29(4): 096501
[9] ZHOU Guo-Rui, FENG Guo-Ying, ZHANG Yi, MA Zi, WANG Jian-Jun. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide[J]. Chin. Phys. Lett., 2012, 29(2): 096501
[10] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 096501
[11] HU Guo-Jie, CAO Bing-Yang, LI Yuan-Wei. Thermal Conduction in a Single Polyethylene Chain Using Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2014, 31(08): 096501
Viewed
Full text


Abstract