FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Electromagnetically Induced Self-Imaging in Four-Level Doppler Broadening Medium |
WANG Chun-Fang**, WANG Feng, YANG Li-Ru |
College of Science, University of Shanghai for Science and Technology, Shanghai 200093
|
|
Cite this article: |
WANG Chun-Fang, WANG Feng, YANG Li-Ru 2015 Chin. Phys. Lett. 32 094203 |
|
|
Abstract We show the influences of temperature on the self-imaging in the coherent atomic system which consists of four-level 87Rb atoms. The different-direction self-imaging, the corresponding imaging quality, and the imaging contrast ratio in this Doppler broadening medium are studied. As a result, the imaging-position linearly increases with the temperature, while the quality of the self-imaging does not show clear connection with the temperature. Due to the weaker mutual interference in the higher temperature, the contrast ratios in the two directions increase. The interesting results are important and may have potential applications in imaging storage and processing.
|
|
Received: 03 June 2015
Published: 02 October 2015
|
|
PACS: |
42.30.Va
|
(Image forming and processing)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.-p
|
(Quantum optics)
|
|
|
|
|
[1] Patorski K 1989 Prog. Opt. 27 1 [2] Gomez-Reino C and Larrea E 1982 Appl. Opt. 21 4271 [3] Gomez-Reino C, Perez M V and Bao C 2002 Gradient-Index Optics (New York: Springer-Verlag) [4] Wang C F, Cheng J and Han S S 2008 Appl. Opt. 47 4864 [5] Wang C F, Cheng J and Han S S 2008 J. Mod. Opt. 55 2223 [6] Cheng J and Han S S 2007 Opt. Lett. 32 1162 [7] Harris S E 1997 Phys. Today 50 36 [8] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [9] Arkhipkin V G and Myslivets S A 2012 Phys. Rev. A 86 063816 [10] Stanojevic J, Parigi V, Bimbard E, Ourjoumtsev A and Grangier P 2013 Phys. Rev. A 88 053845 [11] Heinze G, Rentzsch N and Halfmann T 2012 Phys. Rev. A 86 053837 [12] Zhang S C, Zhou S Y, Loy M M T, Wong G K L and Du S W2011 Opt. Lett. 36 4530 [13] Wang C F, Cheng J and Han S S 2010 Chin. Opt. Lett. 8 115 [14] Wang C F, Cheng J and Han S S 2008 J. Mod. Opt. 55 985 [15] Moseley R R, Shepherd S, Fulton D J, Sinclair B D and Dunn M H 1996 Phys. Rev. A 53 408 [16] Ling H Y, Li Y Q and Xiao M 1998 Phys. Rev. A 57 1338 [17] Zhou F X, Qi Y H, Sun H, Chen D J, Yang J, Niu Y P and Gong S Q 2013 Opt. Express 21 12249 [18] Shpaisman H, Wilson-Gordon A D and Friedmann H 2005 Phys. Rev. A 71 043812 [19] Andre A, Bajcsy M, Zibrov A S and Lukin M D 2005 Phys. Rev. Lett. 94 063902 [20] Cheng J, Han S S and Yan Y J 2005 Phys. Rev. A 72 021801(R) [21] Cheng J and Han S S 2006 Phys. Rev. A 73 063803 [22] Wu Y and Yang X 2004 Phys. Rev. A 70 053818 [23] Wu Y and Saldana J and Zhu Y 2003 Phys. Rev. A 67 013811 [24] Wu Y and Yang X X 2007 Phys. Rev. B 76 054425 [25] Wu Y and Yang X X 2005 Phys. Rev. A 71 053806 [26] Harris S E and Yamamoto Y 1998 Phys. Rev. Lett. 81 3611 [27] Kapoor R and Agarwal G S 2000 Phys. Rev. A 61 053818 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|