Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 094204    DOI: 10.1088/0256-307X/32/9/094204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Polarization-Insensitive Broadband Metamaterial Absorber at the Optical Regime
SHI Jun-Xian1, ZHANG Wen-Chao1, XU Wan1, ZHU Qing1, JIANG Xia1, LI Dong-Dong1, YAN Chang-Chun1**, ZHANG Dao-Hua2
1Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116
2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Cite this article:   
SHI Jun-Xian, ZHANG Wen-Chao, XU Wan et al  2015 Chin. Phys. Lett. 32 094204
Download: PDF(807KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a polarization-insensitive broadband absorber which has a feature of metal-insulator-metal structures. The top metal layer consists of four-fan-rings-shaped gold. Simulations show that the absorber exhibits an absorption of nearly unity at the wavelength of 386.1 nm and a relative absorption bandwidth of 0.548, which refers to the ratio of the full absorption bandwidth over an absorption of 0.9 to the central wavelength. Meanwhile, the absorption is nearly independent of the polarized direction of the incident wave. This absorption bandwidth with insensitive polarization is widely reported to date for such metal-insulator-metal structures. Such a structure offers a way of realization of a polarization-insensitive broadband absorber ranging in ultraviolet-to-visible wavelengths.
Received: 10 May 2015      Published: 02 October 2015
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  78.66.Bz (Metals and metallic alloys)  
  78.20.Bh (Theory, models, and numerical simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/094204       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/094204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Jun-Xian
ZHANG Wen-Chao
XU Wan
ZHU Qing
JIANG Xia
LI Dong-Dong
YAN Chang-Chun
ZHANG Dao-Hua
[1] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[2] Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[3] Li L, Yang Y and Liang C H 2011 J. Appl. Phys. 110 063702
[4] Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun. 2 517
[5] Wang Y, Sun T, Paudel T, Zhang Y, Ren Z and Kempa K 2012 Nano Lett. 12 440
[6] GenovD A, Zhang S and Zhang X 2009 Nat. Phys. 5 687
[7] Cheng Q, Cui T J, Jiang W X and Cai B G 2010 New J. Phys. 12 063006
[8] Feng S and Halterman K 2012 Phys. Rev. B 86 165103
[9] Yoon J W, Koh G M, Song S H and Magnusson R 2012 Phys. Rev. Lett. 109 257402
[10] Wakatsuchi H, Greedy S, Christopoulos C and Paul J 2010 Opt. Express 18 22187
[11] Gu S, Barrett J P, Hand T H, Popa B I and Cummer S A 2010 J. Appl. Phys. 108 064913
[12] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[13] Xu H X, Wang G M, Qi M Q, Liang J G, Gong J Q and Xu Z M 2012 Phys. Rev. B 86 205104
[14] Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L and Ma Y G 2014 Appl. Phys. Lett. 105 021102
[15] Ye Y Q, Jin Y and He S L 2010 J. Opt. Soc. Am. B 27 498
[16] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
[17] Avitzour Y, Urzhumov Y A and Shvets G 2009 Phys. Rev. B 79 045131
[18] Wang B N, Koschny T and Soukoulis C M 2009 Phys. Rev. B 80 033108
[19] Ding F, Cui Y X, Ge X C, Jin Y and He S L 2012 Appl. Phys. Lett. 100 103506
[20] Grant J, Ma Y, Saha S, Khalid A and Cumming D R S 2011 Opt. Lett. 36 3476
[21] Shi C, Zang X F, Wang Y Q, Chen L, Cai B and Zhu Y M 2014 Appl. Phys. Lett. 105 031104
[22] J Zhu, Ma Z F, Sun W J, Ding F, He Q, Zhou L and Ma Y G 2014 Appl. Phys. Lett. 105 021102
[23] Chen S Q, Cheng H, Yang H F, Li J J, Duan X Y, Gu C Z and Tian J G 2011 Appl. Phys. Lett. 99 253104
[24] Hedayati M K, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula V S K, Zaporojtchenko V, Strunkus T, Faupel F and Elbahri M 2011 Adv. Mater. 23 5410
[25] He X J, Yan S T, Ma Q X, Zhang Q F, Jia P, Wu F M and Jiang J X 2015 Opt. Commun. 340 44
[26] Ding F, Jin Y and He S L 2012 Asia Communications and Photonics Conference (Guangzhou, China 7–10 November 2012) 10 1364
[27] Ye D X, Wang Z Y, Xu K W, Li H, Huangfu J T, Wang Z and Ran L X 2013 Phys. Rev. Lett. 111 187402
[28] Dayal G and Ramakrishna S A 2012 Opt. Express 20 17503
[29] Palik E D 1998 Handbook Opt. Constants Solids (New York: Academic Press) p 290
[30] Smith D R, Dalichaouch R, Kroll N, Schultz S, McCall S L and Platzman P M 1993 J. Opt. Soc. Am. B 10 314
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 094204
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 094204
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 094204
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 094204
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 094204
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 094204
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 094204
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 094204
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 094204
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 094204
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 094204
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 094204
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 094204
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 094204
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 094204
Viewed
Full text


Abstract