Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 081101    DOI: 10.1088/0256-307X/32/8/081101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Dyson–Schwinger Equations of Chiral Chemical Potential
TIAN Ya-Lan1, CUI Zhu-Fang2,7, WANG Bin3, SHI Yuan-Mei2,4, YANG You-Chang2,5, ZONG Hong-Shi2,6,7
1Department of Physics, Dingxi Teachers College, Dingxi 743000
2Department of Physics, Nanjing University, Nanjing 210093
3Department of Physics, Huazhong University of Science and Technology, Wuhan 430074
4Department of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171
5School of Physics and Mechanical-Electrical Engineering, Zunyi Normal College, Zunyi 563002
6Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093
7State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing 100190
Cite this article:   
TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin et al  2015 Chin. Phys. Lett. 32 081101
Download: PDF(508KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss the chiral phase transition of quantum chromodynamics (QCD) with a chiral chemical potential μ5 as an additional scale. Within the framework of Dyson–Schwinger equations, we focus particularly on the behavior of the widely accepted as well as interesting critical end point (CEP), using a separable gluon propagator and a Gaussian gluon propagator. We find that there may be no CEP5 in the Tμ5 plane, and the phase transition in the Tμ5 plane might be totally crossover. Our results have apparent consistency with the Lattice QCD calculation. On the other hand, our study may also provide some useful hints to some other studies related to μ5.
Received: 30 January 2015      Published: 02 September 2015
PACS:  11.30.Rd (Chiral symmetries)  
  25.75.Nq (Quark deconfinement, quark-gluon plasma production, and phase transitions)  
  12.38.Mh (Quark-gluon plasma)  
  12.39.-x (Phenomenological quark models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/081101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/081101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Ya-Lan
CUI Zhu-Fang
WANG Bin
SHI Yuan-Mei
YANG You-Chang
ZONG Hong-Shi
[1] Gasser J and Leutwyler H 1984 Ann. Phys. 158 142
[2] Gasser J and Leutwyler H 1985 Nucl. Phys. B 250 465
[3] Pich A 1995 Rep. Prog. Phys. 58 563
[4] Ecker G 1995 Prog. Part. Nucl. Phys. 35 1
[5] Li X Y, Lü X F, Wang B et al 2009 Phys. Rev. C 80 034909
[6] Reinders L J, Rubinstein H and Yazaki S 1985 Phys. Rep. 127 1
[7] King I and Sachrajda C T 1987 Nucl. Phys. B 279 785
[8] Hatsuda T and Lee S H 1992 Phys. Rev. C 46 R34
[9] Klingl F, Kaiser N and Weise W 1997 Nucl. Phys. A 624 527
[10] Klevansky S P 1992 Rev. Mod. Phys. 64 649
[11] Fukushima K 2004 Phys. Lett. B 591 277
[12] Buballa M 2005 Phys. Rep. 407 205
[13] Ratti C, Thaler M A and Weise W 2006 Phys. Rev. D 73 014019
[14] Ratti C, Roessner S, Thaler M et al 2007 Eur. Phys. J. C 49 213
[15] Fukushima K 2008 Phys. Rev. D 77 114028
[16] Cui Z F, Shi C, Xia Y H et al 2013 Eur. Phys. J. C 73 2612
[17] Cui Z F, Shi C, Sun W M et al 2014 Eur. Phys. J. C 74 2782
[18] Cui Z F, Du Y L and Zong H S 2014 Int. J. Mod. Phys. Conf. Ser. 29 1460232
[19] Fodor Z and Katz S D 2004 J. High Energy Phys. 0404 050
[20] Borsanyi S, Fodor Z, Hoelbling C et al 2010 J. High Energy Phys. 09 073
[21] Ejiri S and Yamada N 2013 Phys. Rev. Lett. 110 172001
[22] Roberts C D and Williams A G 1994 Prog. Part. Nucl. Phys. 33 477
[23] Roberts C D and Schmidt S M 2000 Prog. Part. Nucl. Phys. 45 S1
[24] Maris P and Roberts C D 2003 Int. J. Mod. Phys. E 12 297
[25] Roberts C 2008 Prog. Part. Nucl. Phys. 61 50
[26] Jiang Y, Chen H, Sun W M et al 2013 J. High Energy Phys. 1304 14
[27] Clo?t I C and Roberts C D 2014 Prog. Part. Nucl. Phys. 77 1
[28] Shi C, Wang Y L, Jiang Y et al 2014 J. High Energy Phys. 07 014
[29] Zhao A M, Cui Z F, Jiang Y et al 2014 Phys. Rev. D 90 114031
[30] Stephanov M 2006 PoS LAT2006 024
[31] Mohanty B, Collaboration S et al 2011 J. Phys. G: Nucl. Part. Phys. 38 124023
[32] Kumar L 2011 Nucl. Phys. A 862 125
[33] Kumar L 2013 Nucl. Phys. A 904 256c
[34] Mitchell J T 2013 Nucl. Phys. A 904 903c
[35] Fukushima K, Kharzeev D E and Warringa H J 2008 Phys. Rev. D 78 074033
[36] Ruggieri M 2011 Phys. Rev. D 84 014011
[37] Fukushima K, Ruggieri M and Gatto R 2010 Phys. Rev. D 81 114031
[38] Chernodub M N and Nedelin A S 2011 Phys. Rev. D 83 105008
[39] Pisarski R D 1984 Phys. Rev. D 29 2423
[40] Yin P L, Shi Y M, Cui Z F et al 2014 Phys. Rev. D 90 036007
[41] Feng H T, Li J F, Shi Y M et al 2014 Phys. Rev. D 90 065005
[42] Li J F, Hou F Y, Cui Z F et al 2014 Phys. Rev. D 90 073013
[43] Wang J R, Liu G Z and Zhang C J 2015 Phys. Rev. D 91 045006
[44] Cucchieri A, Maas A and Mendes T 2007 Phys. Rev. D 75 076003
[45] Blaschke D, Burau G, Kalinovsky Y L et al 2001 Int. J. Mod. Phys. A 16 2267
[46] Qin S X, Chang L, Chen H et al 2011 Phys. Rev. Lett. 106 172301
[47] Maris P and Tandy P C 1999 Phys. Rev. C 60 055214
[48] Zong H S, Hou F Y, Sun W M et al 2005 Phys. Rev. C 72 035202
[49] Zong H S, Shi Y M, Sun W M et al 2006 Phys. Rev. C 73 035206
[50] Shi Y M, Wu K P, Sun W M et al 2006 Phys. Lett. B 639 248
[51] Chang L, Liu Y X, Sun W M et al 2008 Phys. Lett. B 669 327
[52] Chang L, Liu Y X, Roberts C D et al 2009 Phys. Rev. C 79 035209
[53] Jiang Y, Hou F Y, Luo C B et al 2015 Chin. Phys. Lett. 32 021201
[54] Cui Z F, Hou F Y, Shi Y M et al 2015 Ann. Phys. (N. Y.) 358 172
[55] Yamamoto A 2011 Phys. Rev. Lett. 107 031601
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 081101
[2] Lan-Lan Gao and Xu-Guang Huang. Chiral Anomaly in Non-Relativistic Systems: Berry Curvature and Chiral Kinetic Theory[J]. Chin. Phys. Lett., 2022, 39(2): 081101
[3] Jia-Nan Rong, Liang Chen, and Kai Chang. Chiral Anomaly-Enhanced Casimir Interaction between Weyl Semimetals[J]. Chin. Phys. Lett., 2021, 38(8): 081101
[4] Si-Xue Qin and Craig D. Roberts. Resolving the Bethe–Salpeter Kernel[J]. Chin. Phys. Lett., 2021, 38(7): 081101
[5] Si-Xue Qin and C. D. Roberts. Impressions of the Continuum Bound State Problem in QCD[J]. Chin. Phys. Lett., 2020, 37(12): 081101
[6] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 081101
[7] WANG Xiu-Zhen, LI Jian-Feng, YU Xin-Hua, FENG Hong-Tao. Critical Behavior of Dynamical Chiral Symmetry Breaking with Gauge Boson Mass in QED3[J]. Chin. Phys. Lett., 2015, 32(11): 081101
[8] XIA Cheng-Jun, PENG Guang-Xiong, HOU Jia-Xun. Finite Size Effect on the in-Medium Chiral Condensate at Finite Density[J]. Chin. Phys. Lett., 2014, 31(04): 081101
[9] DAI Lian-Rong. The Prediction of Possible Nonstrange Dibaryon[J]. Chin. Phys. Lett., 2014, 31(1): 081101
[10] CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3[J]. Chin. Phys. Lett., 2012, 29(5): 081101
[11] DAI Lian-Rong. Nucleon-Nucleon Interaction and the Mixing of Scalar Meson[J]. Chin. Phys. Lett., 2010, 27(1): 081101
[12] MU Cheng-Fu, SUN Gao-Feng, ZHUANG Peng-Fei. Neutrino Oscillation Induced by Chiral Phase Transition[J]. Chin. Phys. Lett., 2009, 26(3): 081101
[13] WANG Shun-Zhi, WANG Qing,. Electroweak Chiral Lagrangian for Neutral Higgs Boson[J]. Chin. Phys. Lett., 2008, 25(6): 081101
[14] LU Ran, WANG Qing. Equivalence of Different Descriptions for η Particle in Simplest Little Higgs Model[J]. Chin. Phys. Lett., 2007, 24(12): 081101
[15] DAI Lian-Rong, ZHANG Zong-Ye, YU You-Wen&sup,. Structure of Di-Ω Dibaryon[J]. Chin. Phys. Lett., 2006, 23(12): 081101
Viewed
Full text


Abstract