THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Production of High-pT Kaon and Pion in pp and Au–Au Collisions by Resolved Photoproduction Processes |
CAI Yan-Bing1, YANG Hai-Tao2, LI Yun-De1** |
1Department of Physics, Yunnan University, Kunming 650091 2School of Physics and Electronic Information Engineering, Zhaotong University, Zhaotong 657000
|
|
Cite this article: |
CAI Yan-Bing, YANG Hai-Tao, LI Yun-De 2015 Chin. Phys. Lett. 32 081201 |
|
|
Abstract Taking into account the effects of shadowing and jet quenching, the large transverse momentum distribution of K+, π+ and K+/π+ ratios at √s=200 GeV originating from resolved photoproduction processes is calculated based on perturbative quantum chromodynamics. It is found that the contribution of K+ and π+ produced by photoproduction processes is evident. The K+/π+ ratios in Au–Au collisions show an obvious enhancement compared with p–p collisions. The numerical results indicate that the photoproduction processes are good modification for kaon and pion production.
|
|
Received: 29 January 2015
Published: 02 September 2015
|
|
PACS: |
12.39.St
|
(Factorization)
|
|
13.60.Le
|
(Meson production)
|
|
25.75.-q
|
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
|
|
12.38.Mh
|
(Quark-gluon plasma)
|
|
|
|
|
[1] Koch P, Muller B and Rafelski J 1986 Phys. Rep. 142 167 [2] Koch P, Rafelski J and Greiner W 1983 Phys. Lett. B 123 151 [3] Colella D 2014 EPJ. Web Conf. 80 00033 [4] Rafelski J and Muller B 1982 Phys. Rev. Lett. 48 1066 [5] Eggers H C and Rafelski J 1991 Int. J. Mod. Phys. A 6 1067 [6] Bearden I 1999 Phys. Lett. B 471 6 [7] Adare A 2013 arXiv:1304.3410[nucl-ex] [8] Abelev B 2014 Phys. Lett. B 734 409 [9] Rafelski J and Hagedorn R 1981 Proceedings of Statistical Mechanics of Quarks and Hadrons p 253 [10] Levai P, Papp G, Fai G et al 2006 Acta Phys. Hung. A 27 459 [11] Ko C M and Xia L H 1988 Phys. Rev. C 38 179 [12] Mader C M, Bauer W and Westfall G D 1992 Phys. Rev. C 45 2438 [13] Mattiello R, Sorge H, Stocker H et al 1989 Phys. Rev. Lett. 63 1459 [14] Nisius R 2000 Phys. Rep. 332 165 [15] Krawczyk M, Zembrzuski A and Staszel M 2001 Phys. Rep. 345 265 [16] Knieehl B A 1991 Phys. Lett. B 254 267 [17] Fu Y P and Li Y D 2011 Phys. Rev. C 84 044906 [18] Field R D 1989 Applications of Perturbative QCD (New York: Addison-Wesley Publishing Company) p 270 [19] Zhang Y 2004 arXiv:0401198[hep-ph] [20] Zhang Y, Fai G, Papp G et al 2002 Phys. Rev. C 65 034903 [21] Binnewies J, Kniehl B A and Kramer G 1995 Z. Phys. C 65 471 [22] Binnewies J, Kniehl B A and Kramer G 1995 Phys. Rev. D 52 4947 [23] Kniehl B A, Kramer G and Potter B 2001 Nucl. Phys. B 597 337 [24] Gluck M, Reya E and Schienbein I 1999 Phys. Rev. D 60 054019 [25] Zhu J Q, Jiang X M and Li Y D 2014 Chin. Phys. Lett. 31 111301 [26] Wang E and Wang X N 2001 Phys. Rev. Lett. 87 142301 [27] Zhang B W, Wang E and Wang X N 2004 Phys. Rev. Lett. 93 072301 [28] Srivastava D K, Gale C and Fries R J 2003 Phys. Rev. C 67 034903 [29] Fu Y P and Li Y D 2010 Chin. Phys. C 34 186 [30] Levai P, Papp G, Fai G et al 2001 arXiv:0104035[nucl-th] [31] Cheng L and Wang E 2010 Phys. Rev. C 82 014901 [32] Cai Y B, Yu G M and Li Y D 2014 Nucl. Phys. Rev. 31 14 [33] Eskola K J, Kolhinen V J and Salgado C A 1999 Europhys. Lett. J C 9 61 [34] Qiu J W 1987 Nucl. Phys. B 291 746 [35] Wang X N and Gyulassy M 1991 Phys. Rev. D 44 3501 [36] Fries R J, Muller B and Srivastava D K 2003 Phys. Rev. Lett. 90 132301 [37] Adare A 2011 Phys. Rev. C 83 064903 [38] Barnafoldi G G, Fai G, Levai P et al 2001 J. Phys. G 27 1767 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|