GENERAL |
|
|
|
|
The Improved Design of Multi-channel Thin Gap Chamber Simulation Signal Source for the ATLAS Detector Upgrade |
HU Kun1,2**, LU Hou-Bing1,2,3, WANG Xu1,2, LI Feng1,2, HAN Liang1,2, JIN Ge1,2 |
1State Key Laboratory of Particle Detection & Electronics, University of Science and Technology of China, Hefei 230026 2Department of Modern Physics, University of Science and Technology of China, Hefei 230026 3Hefei Electronic Engineering Institute, Hefei 230037
|
|
Cite this article: |
HU Kun, LU Hou-Bing, WANG Xu et al 2015 Chin. Phys. Lett. 32 080701 |
|
|
Abstract We develop an improved design of thin gap chamber (TGC) simulation signal source. To further simulate the feature of TGC detector, a novel thought is proposed. The TGC source has 256 channels. Every channel can randomly output the signal in 25 ns. The design is based on true random number generator (TRNG). Considering the electrical connection between the TGC source and the developing trigger electronics, the GFZ connector is used. The experimental results show that the improved TGC simulation signal source can uniformly output the random signal in every channel. The output noise is less than 3 mVrms.
|
|
Received: 27 March 2015
Published: 02 September 2015
|
|
PACS: |
07.05.Hd
|
(Data acquisition: hardware and software)
|
|
29.40.Gx
|
(Tracking and position-sensitive detectors)
|
|
07.77.-n
|
(Atomic, molecular, and charged-particle sources and detectors)
|
|
|
|
|
[1] Aad G, Abbott B, Abdallah J et al (Atlas collaboration) 1997 CEAN/LHCC/97 [2] ATLAS Collaboration 2008 JINST 3 S08003 [3] Yonathan M (Atlas collaboration) 2013 Proceedings of the 3rd International Conference on Advancements in Nuclear Instrumentation Measurement Methods and Their Applications (ANIMMA) p 1 [4] Dong J, Hu B T, Chen Y B and Xie Y G 2009 Chin. Phys. B 18 4229 [5] Yan Q R, Zhao B S, Yang H et al 2010 Acta Phys. Sin. 59 6164 (in Chinese) [6] Smakhtin V, Mikenberg G, Klier A et al 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 598 196 [7] Amram N, Bella G, Benhammou Y et al 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 628 177 [8] Ochi A, Kiyamura H et al 2006 Rev. Sci. Instrum. 77 10E707 [9] Gianluigi D G, Jack F, Jessica M et al 2013 IEEE Trans. Nucl. Sci. 60 2314 [10] Hu K, Lu H, Wang X et al 2015 Rev. Sci. Instrum. 86 016116 [11] http://www.samtec.com/ftppub/pdf/gfz.pdf [12] Jennewein T, Achleitner U, Weihs G et al 2000 Rev. Sci. Instrum. 71 1675 [13] Jian Y, Ren M, Wu E et al 2011 Rev. Sci. Instrum. 82 073109 [14] England D G, Bustard P J, Moffatt D J et al 2014 Appl. Phys. Lett. 104 051117 [15] Sunar B, Martin W J and Stinson D R 2007 IEEE Trans. Comput. 56 109 [16] Wold K and Tan C H 2008 Proc. Int. Conf. Reconfigurable Computing FPGAs p 385 [17] Jessa M and Matuszewski L 2011 Proc. Int. Conf. Reconfigurable Computing FPGAs p 274 [18] Wold K and Petrovic S 2012 Proceedings of IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits and System p 145 [19] Loza S and Matuszewski L 2014 Proc. Int. Conf. Signals Electron. Syst. (ICSES) p 1 [20] Wang G Y, Bao X L and Wang Z L 2008 Chin. Phys. B 17 3596 [21] Liu Q, Fang J Q, Zhao G and Li Y 2012 Acta Phys. Sin. 61 130508 (in Chinese) [22] Davies R 2002 http://www.robertnz.net/pdf/xor2.pdf [23] Vasilescu G 2005 Electronic Noise and Interfering Signals (Berlin: Spring-Verlag) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|