GENERAL |
|
|
|
|
Phase-Coding Self-Testing Quantum Random Number Generator |
SONG Xiao-Tian1,2, LI Hong-Wei1,2, YIN Zhen-Qiang1,2**, LIANG Wen-Ye1,2, ZHANG Chun-Mei1,2, HAN Yun-Guang1,2, CHEN Wei1,2**, HAN Zheng-Fu1,2 |
1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 2Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
SONG Xiao-Tian, LI Hong-Wei, YIN Zhen-Qiang et al 2015 Chin. Phys. Lett. 32 080302 |
|
|
Abstract How to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014) 140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent assumption, which indicates a method to test the randomness of bit strings according to the generation process rather than the results. Based on this protocol, we implement a quantum random number generator with an intrinsic stable phase-encoded quantum key distribution system. The system has been continuously running for more than 200 h, a stable witness W with the average value of 0.9752 and a standard deviation of 0.0024 are obtained. More than 1 G random bits are generated and the results pass all items of NIST test suite.
|
|
Received: 09 April 2015
Published: 02 September 2015
|
|
PACS: |
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
|
|
|
[1] Menezes A J, Oorschot P C and Vanstone S A 1997 Handbook of Applied Cryptography (Boca Raton: CRC press) [2] http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html [3] Wahl M, Leifgen M, Berlin M, Rohlicke T, Rahn H J and Benson O 2011 Appl. Phys. Lett. 98 171105 [4] Stefanov A, Gisin N, Guinnard O, Guinnard L and Zbinden H 2000 J. Mod. Opt. 47 595 [5] Dynes J F, Yuan Z L, Sharpe A L and Shields A J 2008 Appl. Phys. Lett. 93 031109 [6] Qi B, Chi Y, Lo H K and Li Q 2010 Opt. Lett. 35 312 [7] Guo H, Tang W, Liu Y and Wei W 2010 Phys. Rev. E 81 051137 [8] Nie Y Q, Zhang H F, Zhang Z, Wang J and Ma X F 2014 Appl. Phys. Lett. 104 051110 [9] Xu F, Qi B, Ma X, Xu H, Zheng H and Lo H K 2012 Opt. Express 20 12366 [10] Pironio S, Acin A, Massar S et al 2010 Nature 464 1021 [11] Li H W, Yin Z Q, Wu Y C, Zou X B, Wang S, Chen W, Guo G C and Han Z F 2011 Phys. Rev. A 84 034301 [12] Li H W, Pawlowski M, Yin Z Q, Guo G C and Han Z F 2012 Phys. Rev. A 85 052308 [13] Bowles J, Quintino M T and Brunner N 2014 Phys. Rev. Lett. 112 140407 [14] Li H W, Yin Z Q, Chen W, Wang S, Guo, G C and Han Z F 2014 Phys. Rev. A 89 032302 [15] Yin Z Q, Fung C H F, Ma X, Zhang C M, Li H W, Chen W, Wang S, Guo G C and Han Z F 2014 Phys. Rev. A 90 052319 [16] Yin Z Q, Fung C H F, Ma X, Zhang C M, Li H W, Chen W, Wang S, Guo G C and Han Z F 2013 Phys. Rev. A 88 062322 [17] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (New York: IEEE) p 179 [18] Mo X F, Zhu B, Han Z F, Gui Y Z and Guo G C 2005 Opt. Lett. 30 2632 [19] Lunghi T, Brask J B, Lim C, Lavigne Q, Bowles J, Martin A, Zbinden H and Brunner N 2015 Phys. Rev. Lett. 114 150501 [20] http://www.idquantique.com/photon-counting/photon-counting-modules/id210/ [21] http://www.qasky.com/Product.aspx?id=91 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|