Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 080301    DOI: 10.1088/0256-307X/32/8/080301
GENERAL |
The Security Analysis of Two-Step Quantum Direct Communication Protocol in Collective-Rotation Noise Channel
LI Jian1,2,3, SUN Feng-Qi1**, PAN Ze-Shi1, NIE Jin-Rui1, CHEN Yan-Hua1, YUAN Kai-Guo1
1School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876
2Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026
3Science and Technology on Communication Security Laboratory, Chengdu 610041
Cite this article:   
LI Jian, SUN Feng-Qi, PAN Ze-Shi et al  2015 Chin. Phys. Lett. 32 080301
Download: PDF(3056KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein–Podolsky–Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003) 042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Q0(M:(Q0,1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ε is, the larger the error rate Q is. When the noise level ε is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q<0.153. Similarly, if error rate Q>0.153=Q0, eavesdropping information I>1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
Received: 01 February 2015      Published: 02 September 2015
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/080301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/080301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jian
SUN Feng-Qi
PAN Ze-Shi
NIE Jin-Rui
CHEN Yan-Hua
YUAN Kai-Guo
[1] Su X L 2013 Chin. Phys. B 22 080304
[2] Peng J Y, Bai M Q and Mo Z W 2014 Chin. Phys. Lett. 31 010201
[3] Lee S W, Park K, Ralph T C and Jeong H 2015 Phys. Rev. Lett. 114 113603
[4] Ali M and Huang J 2014 Chin. Phys. Lett. 31 047102
[5] Wang C, Liu J W, Chen X B, Bi Y G and Shang T 2015 Chin. Phys. B 24 40304
[6] Wu J 2013 Int. J. Theor. Phys. 52 1719
[7] Bostr?m K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[8] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[9] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[10] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501
[11] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[12] Gao F, Guo F Z, Wen Q Y and Zhu F C 2008 Scin. Chin. Ser. G-Phys. Mech. Astron. 51 1853
[13] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[14] Ren B C, Wei H R, Hua M, Li T and Deng F G 2013 Eur. Phys. J. D 67 1
[15] Liu Z H, Chen H W, Liu W J, Xu J, Wang D and Li Z Q 2013 Quantum Inf. Process. 12 587
[16] Zhang Q N, Li C C, Li Y H and Nie Y Y 2013 Int. J. Theor. Phys. 52 22
[17] Wójcik A 2003 Phys. Rev. Lett. 90 157901
[18] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2007 Phys. Scr. 76 25
[19] Yang Y G, Wen Q Y and Zhu F C 2007 Chin. Phys. B 16 1838
[20] Liu Z H and Chen H W 2013 Chin. Phys. Lett. 30 079901
[21] Chang Y, Zhang S B, Yan L L and Sheng Z W 2013 Chin. Phys. Lett. 30 060301
[22] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359
[23] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[24] Niu H C, Ren B C, Wang T J, Hua M and Deng F G 2012 Int. J. Theor. Phys. 51 2346
[25] Pei C X, Han B B, Zhao N, Liu D and Yan Y 2009 Acta Photo. Sin. 38 422
[26] Bostroem K and Felbinger T 2008 Phys. Lett. A 372 3953
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 080301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 080301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 080301
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 080301
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 080301
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 080301
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 080301
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 080301
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 080301
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 080301
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 080301
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 080301
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 080301
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 080301
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 080301
Viewed
Full text


Abstract