GENERAL |
|
|
|
|
The Security Analysis of Two-Step Quantum Direct Communication Protocol in Collective-Rotation Noise Channel |
LI Jian1,2,3, SUN Feng-Qi1**, PAN Ze-Shi1, NIE Jin-Rui1, CHEN Yan-Hua1, YUAN Kai-Guo1 |
1School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876 2Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026 3Science and Technology on Communication Security Laboratory, Chengdu 610041
|
|
Cite this article: |
LI Jian, SUN Feng-Qi, PAN Ze-Shi et al 2015 Chin. Phys. Lett. 32 080301 |
|
|
Abstract To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein–Podolsky–Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003) 042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Q0(M:(Q0,1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ε is, the larger the error rate Q is. When the noise level ε is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q<0.153. Similarly, if error rate Q>0.153=Q0, eavesdropping information I>1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
|
|
Received: 01 February 2015
Published: 02 September 2015
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
|
|
|
[1] Su X L 2013 Chin. Phys. B 22 080304 [2] Peng J Y, Bai M Q and Mo Z W 2014 Chin. Phys. Lett. 31 010201 [3] Lee S W, Park K, Ralph T C and Jeong H 2015 Phys. Rev. Lett. 114 113603 [4] Ali M and Huang J 2014 Chin. Phys. Lett. 31 047102 [5] Wang C, Liu J W, Chen X B, Bi Y G and Shang T 2015 Chin. Phys. B 24 40304 [6] Wu J 2013 Int. J. Theor. Phys. 52 1719 [7] Bostr?m K and Felbinger T 2002 Phys. Rev. Lett. 89 187902 [8] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [9] Deng F G and Long G L 2004 Phys. Rev. A 69 052319 [10] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501 [11] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317 [12] Gao F, Guo F Z, Wen Q Y and Zhu F C 2008 Scin. Chin. Ser. G-Phys. Mech. Astron. 51 1853 [13] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309 [14] Ren B C, Wei H R, Hua M, Li T and Deng F G 2013 Eur. Phys. J. D 67 1 [15] Liu Z H, Chen H W, Liu W J, Xu J, Wang D and Li Z Q 2013 Quantum Inf. Process. 12 587 [16] Zhang Q N, Li C C, Li Y H and Nie Y Y 2013 Int. J. Theor. Phys. 52 22 [17] Wójcik A 2003 Phys. Rev. Lett. 90 157901 [18] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2007 Phys. Scr. 76 25 [19] Yang Y G, Wen Q Y and Zhu F C 2007 Chin. Phys. B 16 1838 [20] Liu Z H and Chen H W 2013 Chin. Phys. Lett. 30 079901 [21] Chang Y, Zhang S B, Yan L L and Sheng Z W 2013 Chin. Phys. Lett. 30 060301 [22] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359 [23] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321 [24] Niu H C, Ren B C, Wang T J, Hua M and Deng F G 2012 Int. J. Theor. Phys. 51 2346 [25] Pei C X, Han B B, Zhao N, Liu D and Yan Y 2009 Acta Photo. Sin. 38 422 [26] Bostroem K and Felbinger T 2008 Phys. Lett. A 372 3953 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|