GENERAL |
|
|
|
|
Analysis of Faraday Mirror in Auto-Compensating Quantum Key Distribution |
WEI Ke-Jin, MA Hai-Qiang**, LI Rui-Xue, ZHU Wu, LIU Hong-Wei, ZHANG Yong, JIAO Rong-Zhen |
School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
WEI Ke-Jin, MA Hai-Qiang, LI Rui-Xue et al 2015 Chin. Phys. Lett. 32 080303 |
|
|
Abstract The 'plug & play' quantum key distribution system is the most stable and the earliest commercial system in the quantum communication field. Jones matrix and Jones calculus are widely used in the analysis of this system and the improved version, which is called the auto-compensating quantum key distribution system. Unfortunately, existing analysis has two drawbacks: only the auto-compensating process is analyzed and existing systems do not fully consider laser phase affected by a Faraday mirror (FM). In this work, we present a detailed analysis of the output of light pulse transmitting in a plug & play quantum key distribution system that contains only an FM, by Jones calculus. A similar analysis is made to a home-made auto-compensating system which contains two FMs to compensate for environmental effects. More importantly, we show that theoretical and experimental results are different in the plug & play interferometric setup due to the fact that a conventional Jones matrix of FM neglected an additional phase π on alternative polarization direction. To resolve the above problem, we give a new Jones matrix of an FM according to the coordinate rotation. This new Jones matrix not only resolves the above contradiction in the plug & play interferometric setup, but also is suitable for the previous analyses about auto-compensating quantum key distribution.
|
|
Received: 24 April 2015
Published: 02 September 2015
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
|
|
|
[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301 [2] Buttler T W, Hughes J R, Kwiat G P, Lamoreaux K S, Luther G G, Morgan L G, Nordholt E J, Peterson G C and Simmons M C 1998 Phys. Rev. Lett. 81 3283 [3] Stucki D, Gisin N, Guinnard O, Ribordy G and Zbinden H 2002 New J. Phys. 4 41 [4] Mo X F, Zhu B, Han Z F, Gui Y Z and Gun G C 2005 Opt. Lett. 30 2632 [5] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and Guo G C 2008 Chin. Phys. Lett. 25 3547 [6] Zhu Z C and Zhang Y Q 2010 Chin. Phys. Lett. 27 060303 [7] Stucki D, Walenta N, Vannel F, Thew R T, Gisin N, Zbinden H, Gray S, Towery C R and Ten S 2009 New J. Phys. 11 075003 [8] Ma H Q, Wei K J and Yang J H 2013 J. Opt. Soc. Am. B 30 2560 [9] Marand C and Townsend P D 1995 Opt. Lett. 20 1695 [10] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762 [11] Muller A, Herzog T, Huttner B, Tittel W, Zbinden H and Gisin N 1997 Appl. Phys. Lett. 70 793 [12] Martinelli M 1989 Opt. Commun. 72 341 [13] Bogdanski J, Rafiei N and Bourennane M 2008 Phys. Rev. A 78 062307 [14] Sun S H, Ma H Q, Han J J, Liang L M and Li C Z 2010 Opt. Lett. 35 1203 [15] Liu Y, Ju L, Liang X L, Tang S B, Tu G L S, Zhou L, Peng C Z, Chen K, Chen T Y, Chen Z B and Pan J W 2012 Phys. Rev. Lett. 109 030501 [16] Ma H Q, Wei K J and Yang J H 2013 Opt. Lett. 38 4494 [17] Xu F H, Wei K J, Sajeed S, Kaiser S, Sun S H, Tang Z Y, Qian L, Makarov V and Lo H K 2015 arXiv:1408.3667 [quant-ph] [18] Xu F H, Arrazola J M, Wei K J, Wang W Y, Palacios-Avila P, Feng C, Sajeed S and Lo H K 2015 arXiv:1503.05499 [quant-ph] [19] Bethune D S and Risk W P 2002 New J. Phys. 4 42 [20] Cho S B and Noh T G 2009 Opt. Express 17 19027 [21] Ma H Q, Zhao J L and Wu L A 2007 Opt. Lett. 32 698 [22] Sun S H, Jiang M S and Liang L M 2011 Phys. Rev. A 83 062331 [23] Pistoni N C 1995 Appl. Opt. 34 7870 [24] Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|