Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 080304    DOI: 10.1088/0256-307X/32/8/080304
GENERAL |
Quantum Interference by Entangled Trajectories
XU Feng1,2**, WANG Li-Fei3, CUI Xiao-Dong1
1School of Physics, Shandong University, Jinan 250100
2School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001
3School of Science, Shandong Jiaotong University, Jinan 250357
Cite this article:   
XU Feng, WANG Li-Fei, CUI Xiao-Dong 2015 Chin. Phys. Lett. 32 080304
Download: PDF(4076KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The quantum interference pattern in the double-slit experiment is qualitatively reproduced by using the entangled trajectory molecular dynamics method and compared with previous works. We compare entangled trajectory and classical trajectory with the same initial state in the phase space to show quantum effect in the evolution of trajectories. It is involved with breakdown in the statistical independence of the trajectories. Although our result does not agree well with exact quantum calculation in quantitatively with loss of part of interference pattern peaks, we can offer a reasonable explanation by analyzing quantum interference of two Gaussian wave packets in the phase space.
Received: 14 March 2015      Published: 02 September 2015
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Xp (Tunneling, traversal time, quantum Zeno dynamics)  
  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/080304       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/080304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Feng
WANG Li-Fei
CUI Xiao-Dong
[1] Hillery M 1987 Phys. Rev. A 35 725
[2] Marian P, Marian T A and Scutaru H 2003 Phys. Rev. A 68 062309
[3] Carnal O and Mlyney J 1991 Phys. Rev. Lett. 66 2689
[4] Schollkopf W and Toennies J P 1994 Science 266 1345
[5] Kunze S, Dieckmann K and Rempe G 1997 Phys. Rev. Lett. 78 2038
[6] Arndt M, Nairz O, Vos-Andrese J, Keller C, van der Zouw G and Zeilinger A 1999 Nature 401 680
[7] Sanz A S, Borondo F and Miret-Artes S 2000 Phys. Rev. B 61 7743
[8] Sanz A S, Borondo F and Miret-Artes S 2002 J. Phys.: Condens. Matter 14 6109
[9] Sanz A S, Borondo F and Bastiaans M J 2005 Phys. Rev. A 71 042103
[10] Li Z Y 2014 Chin. Phys. B 23 110309
[11] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon)
[12] Heller E J 1981 J. Chem. Phys. 75 1048
[13] Tatarskii V I 1983 Sov. Phys. Usp. 26 311
[14] Gelabert R, Gimenez X, Thoss M, Wang H and Miller W H 2002 J. Chem. Phys. 116 10598
[15] Wyatt R 2005 Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (New York: Springer)
[16] Donoso A and Martens C C 2001 Phys. Rev. Lett. 87 223202
[17] Donoso A, Zheng Y J and Martens C C 2003 J. Chem. Phys. 119 5010
[18] Wang A, Zheng Y J, Martens C C and Ren W 2009 Phys. Chem. Chem. Phys. 11 1588
[19] Wang L F, Martens C C and Zheng Y J 2012 J. Chem. Phys. 137 034113
[20] Zhang X F and Zheng Y J 2009 Chin. Phys. Lett. 26 0023404
[21] Xu F and Zheng Y J 2013 Acta Phys. Sin. 62 024113 (in Chinese)
[22] Xu F, Wang L F, Martens C C and Zheng Y J 2013 J. Chem. Phys. 138 024113
[23] Wang L F and Zheng Y J 2013 Chem. Phys. Lett. 563 112
[24] Xu F, Martens C C and Zheng Y J 2015 Sci. Rep. (submitted)
[25] Wigner E P 1932 Phys. Rev. 40 749
[26] Feit M D, Fleck J J A and Steiger A 1982 J. Comput. Phys. 47 412
[27] López H, Martens C C and Donoso A 2006 J. Chem. Phys. 125 154111
[28] Donoso A and Martens C C 2002 J. Chem. Phys. 116 10598
[29] Silverman B W 1986 Density Estimation for Statistics and Data Analysis (London: Chapman and Hall)
[30] Fukunaga K 1990 Introduction to Statistical Pattern Recognition 2nd edn (San Diego: Academic)
[31] Brooksby C and Prezhdo O V 2003 Chem. Phys. Lett. 378 533
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 080304
[2] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 080304
[3] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 080304
[4] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 080304
[5] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 080304
[6] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 080304
[7] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 080304
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 080304
[9] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 080304
[10] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 080304
[11] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 080304
[12] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 080304
[13] Zhi-Yuan Li. Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers[J]. Chin. Phys. Lett., 2016, 33(08): 080304
[14] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 080304
[15] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 080304
Viewed
Full text


Abstract