CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
High-Performance In0.23Ga0.77As Channel MOSFETs with High Current Ratio Ion/Ioff Grown on Semi-insulating GaAs Substrates by MOCVD |
KONG Xiang-Ting1, ZHOU Xu-Liang1, LI Shi-Yan1, QIAO Li-Jun1, LIU Hong-Gang2, WANG Wei1, PAN Jiao-Qing1** |
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
|
|
Cite this article: |
KONG Xiang-Ting, ZHOU Xu-Liang, LI Shi-Yan et al 2015 Chin. Phys. Lett. 32 037301 |
|
|
Abstract We demonstrate high-performance In0.23Ga0.77As channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with Ion/Ioffhigh on-current to off-current (Ion/Ioff) ratio grown on semi-insulating GaAs wafers by metal-organic chemical vapor deposition (MOCVD). The 2 μm channel-length devices exhibit a peak extrinsic transconductance of 150 mS/mm and a drain current up to 500 mA/mm. The maximum effective mobility is 1680 cm2/Vs extracted by the split C–V method. Furthermore, the Ion/Ioff ratio is significantly improved from approximately 4.5×103 up to approximately 4.32×104 by controlling the etch thickness of In0.49Ga0.51P. The high drain current and high Ion/Ioff ratio of the In0.23Ga0.77As channel MOSFETs are achieved due to the high effective mobility and the low gate leakage current density.
|
|
Published: 26 February 2015
|
|
PACS: |
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
77.55.D-
|
|
|
|
|
|
[1] Luo G L, Yang T H, Chang E Y, Chang C Y and Chao K A 2003 Jpn. J. Appl. Phys. 42 L517 [2] Hsieh Y C, Chang E Y, Luo G L, Pilkuhn M H, Yang J Y, Chung H W and Chang C Y 2007 Appl. Phys. Lett. 90 083507 [3] Chang E Y, Huang J C, Lin Y C, Hsieh Y C and Chang C Y 2008 Jpn. J. Appl. Phys. 47 7069 [4] Takagi S, Tezuka T, Irisawa T, Nakaharai S, Numata T, Usuda K, Sugiyama N, Shichijo M, Nakane R and Sugahara S 2007 Solid-State Electron. 51 526 [5] Xuan Y, Wu Y Q, Lin H C, Shen T and Ye P D 2007 IEEE Electron Device Lett. 28 935 [6] Egard M, Ohlsson L, Borg B M, Lenrick F, Wallenberg R, Wernersson L and Lind E 2011 IEDM Tech. Dig. p 303 [7] Rajagopalan K, Abrokwah J, Droopad R and Passlack M 2006 IEEE Electron Device Lett. 27 959 [8] Wu Y Q, Xu M, Wang R S, Koybasi O and Ye P D 2009 IEDM Tech. Dig. p 323 [9] Terao R, Kanazawa T, Ikeda S, Yonai Y, Kato A and Miyamoto Y 2011 Appl. Phys. Express 4 054201 [10] Yonai Y, Kanazawa T, Ikeda D and Miyamoto Y 2011 IEDM Tech. Dig. p 13.3.1 [11] Xue F, Jiang A, Zhao H, Chen Y T, Wang Y Z, Zhou F and Lee J 2012 IEEE Electron Device Lett. 33 32 [12] Xuan Y, Lin H C, Ye D and Wilk W D 2006 Appl. Phys. Lett. 88 263518 [13] Xuan Y, Wu Y Q and Ye P D 2008 IEEE Electron Device Lett. 29 294 [14] Sato M, Zeimer U, Bugge F, Gramlich S and Weyers M 1997 Appl. Phys. Lett. 70 1134 [15] Chen C H, Larsen C A and Stringfellow G B 1987 Appl. Phys. Lett. 50 218 [16] Schlenker D, Miyamoto T, Chen Z, Koyama F and Iga K 2000 J. Cryst. Growth 209 27 [17] Takeuchi T, Chang Y L, Tandon A, Bour D, Corzine S, Twist R, Tan M and Luan H C 2002 Appl. Phys. Lett. 80 2445 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|