CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Observation of a Current Plateau in the Transfer Characteristics of InGaN/AlGaN/AlN/GaN Heterojunction Field Effect Transistors |
YAN Jun-Da1, WANG Quan1,2, WANG Xiao-Liang1,3,4**, XIAO Hong-Ling1, JIANG Li-Juan1, YIN Hai-Bo1, FENG Chun1, WANG Cui-Mei1, QU Shen-Qi1, GONG Jia-Min2, ZHANG Bo2, LI Bai-Quan5, WANG Zhan-Guo3, HOU Xun4 |
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710049 3Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083 4ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, Beijing 100083 5Beijing Huajin Chuangwei Technology Co., Ltd., Beijing 100036
|
|
Cite this article: |
YAN Jun-Da, WANG Quan, WANG Xiao-Liang et al 2015 Chin. Phys. Lett. 32 127301 |
|
|
Abstract Direct?current transfer characteristics of (InGaN)/AlGaN/AlN/GaN heterojunction field effect transistors (HFETs) are presented. A drain current plateau (IDS=32.0 mA/mm) for VGS swept from +0.7 V to -0.6 V is present in the transfer characteristics of InGaN/AlGaN/AlN/GaN HFETs. The theoretical calculation shows the coexistence of two-dimensional electron gas (2DEG) and two-dimensional hole gas (2DHG) in InGaN/AlGaN/AlN/GaN heterostructures, and the screening effect of 2DHG to the 2DEG in the conduction channel can explain this current plateau. Moreover, the current plateau shows the time-dependent behavior when IDS–VGS scans repeated are conducted. The obtained insight provides indication for the design in the fabrication of GaN-based super HFETs.
|
|
Received: 06 May 2015
Published: 05 January 2016
|
|
PACS: |
73.61.Ey
|
(III-V semiconductors)
|
|
85.30.Tv
|
(Field effect devices)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
|
|
|
[1] Mishra U K et al 2008 Proc. IEEE 96 287 [2] Saadat O I et al 2009 IEEE Electron Device Lett. 30 1254 [3] Wang X L et al 2009 Solid-State Electron. 53 332 [4] Kuzmík J 2001 IEEE Electron Device Lett. 22 510 [5] Wang X D et al 2012 IEEE Trans. Electron Devices 59 1393 [6] Kuzmik J et al 2010 IEEE Trans. Electron Devices 57 2144 [7] L Wang, W Hu, X Chen and W Lu 2012 J. Electron. Mater. 41 2130 [8] Ikeda N, Niiyama Y, Kambayash H, Sato Y, Nomura T, Kato S and Yoshida S 2010 Proc. IEEE 98 1151 [9] Kambayashi H, Satoh Y, Ootomo S, Kokawa T, Nomura T, Kato S and Chow T P 2010 Solid-State Electron. 54 660 [10] Nakajima A, Adachi K, Shimizu M and Okumura H 2006 Appl. Phys. Lett. 89 193501 [11] Nakajima A, Sumida Y, Dhyani M H and Kawai H 2011 IEEE Electron Device Lett. 32 542 [12] Nakajima A, Dhyani M H, Narayanan E M S, Sumida Y and Kawai H 2011 Proc. 23rd Int. Symp. Power Semiconductor Devices and ICs (San Diego CA 23–26 May 2011) p 280 [13] Nakajima A, Unni V, Menon K G, Dhyani M H, Narayanan E M S, Sumida Y and Kawai H 2012 Proc. 24th Int. Symp. Power Semiconductor Devices and ICs (Bruges Belgium 3–7 June 2012) p 265 [14] Ishida H, Shibata D, Yanagihara M, Uemoto Y, Matsuo H, Ueda T, Tanaka T and Ueda D 2008 IEEE Electron Device Lett. 29 1087 [15] Ishida H, Shibata D, Matsuo H, Yanagihara M, Uemoto Y, Ueda T, Tanaka T and Ueda D 2008 Electron. Devices Meeting (San Francisco CA 15–17 December 2008) p 1 [16] Yan J D, Wang X L, Wang Q, Qu S Q, Xiao H L, Peng E C, Kang H, Wang C M, Feng C, Yin H B, Jiang L J, Li B Q, Wang Z G and Hou X 2014 J. Appl. Phys. 116 054502 [17] Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, B and Eastman L F 2002 J. Phys.: Condens. Matter 14 3399 [18] Mustafa N A, Granzner R, Polyakov V, Racko J, Mikolá?ek M, Breza J and Schwierz F 2012 J. Appl. Phys. 111 044512 [19] Chen W J, Wong K Y, Huang W and Chen K J 2008 Appl. Phys. Lett. 92 253501 [20] Wang Z, Zhang B, Chen W and Li Z 2013 IEEE Trans. Electron Devices 60 1607 [21] Mizutani T, Ito M, Kishimoto S and Nakamura F 2007 IEEE Electron Device Lett. 28 549 [22] Mizutani T, Yamada H, Kishimoto S and Nakamura F 2013 J. Appl. Phys. 113 034502 [23] Joh J, Del Alamo J A and Jimenez J 2008 IEEE Electron Device Lett. 29 665 [24] Mizutani T, Ohno Y, Akita M, Kishimoto S and Maezawa K 2003 IEEE Trans. Electron Devices 50 2015 [25] Nakajima A, Sumida Y, Dhyani M H, Kawai H and Narayanan E M S 2010 Appl. Phys. Express 3 121004 [26] Nakajima A, Liu P, Ogura M, Makino T, Kakushima K, Nishizawa S i, Ohashi H, Yamasaki S and H Iwai 2014 J. Appl. Phys. 115 153707 [27] Uemoto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T and Ueda D 2007 IEEE Trans. Electron Devices 54 3393 [28] Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Devices 48 560 [29] Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60 [30] Cai Y, Zhou Y, Lau K and Chen K J 2006 IEEE Trans. Electron Devices 53 2207 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|