Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 127301    DOI: 10.1088/0256-307X/32/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Observation of a Current Plateau in the Transfer Characteristics of InGaN/AlGaN/AlN/GaN Heterojunction Field Effect Transistors
YAN Jun-Da1, WANG Quan1,2, WANG Xiao-Liang1,3,4**, XIAO Hong-Ling1, JIANG Li-Juan1, YIN Hai-Bo1, FENG Chun1, WANG Cui-Mei1, QU Shen-Qi1, GONG Jia-Min2, ZHANG Bo2, LI Bai-Quan5, WANG Zhan-Guo3, HOU Xun4
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710049
3Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083
4ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, Beijing 100083
5Beijing Huajin Chuangwei Technology Co., Ltd., Beijing 100036
Cite this article:   
YAN Jun-Da, WANG Quan, WANG Xiao-Liang et al  2015 Chin. Phys. Lett. 32 127301
Download: PDF(713KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Direct?current transfer characteristics of (InGaN)/AlGaN/AlN/GaN heterojunction field effect transistors (HFETs) are presented. A drain current plateau (IDS=32.0 mA/mm) for VGS swept from +0.7 V to -0.6 V is present in the transfer characteristics of InGaN/AlGaN/AlN/GaN HFETs. The theoretical calculation shows the coexistence of two-dimensional electron gas (2DEG) and two-dimensional hole gas (2DHG) in InGaN/AlGaN/AlN/GaN heterostructures, and the screening effect of 2DHG to the 2DEG in the conduction channel can explain this current plateau. Moreover, the current plateau shows the time-dependent behavior when IDSVGS scans repeated are conducted. The obtained insight provides indication for the design in the fabrication of GaN-based super HFETs.
Received: 06 May 2015      Published: 05 January 2016
PACS:  73.61.Ey (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/127301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/127301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Jun-Da
WANG Quan
WANG Xiao-Liang
XIAO Hong-Ling
JIANG Li-Juan
YIN Hai-Bo
FENG Chun
WANG Cui-Mei
QU Shen-Qi
GONG Jia-Min
ZHANG Bo
LI Bai-Quan
WANG Zhan-Guo
HOU Xun
[1] Mishra U K et al 2008 Proc. IEEE 96 287
[2] Saadat O I et al 2009 IEEE Electron Device Lett. 30 1254
[3] Wang X L et al 2009 Solid-State Electron. 53 332
[4] Kuzmík J 2001 IEEE Electron Device Lett. 22 510
[5] Wang X D et al 2012 IEEE Trans. Electron Devices 59 1393
[6] Kuzmik J et al 2010 IEEE Trans. Electron Devices 57 2144
[7] L Wang, W Hu, X Chen and W Lu 2012 J. Electron. Mater. 41 2130
[8] Ikeda N, Niiyama Y, Kambayash H, Sato Y, Nomura T, Kato S and Yoshida S 2010 Proc. IEEE 98 1151
[9] Kambayashi H, Satoh Y, Ootomo S, Kokawa T, Nomura T, Kato S and Chow T P 2010 Solid-State Electron. 54 660
[10] Nakajima A, Adachi K, Shimizu M and Okumura H 2006 Appl. Phys. Lett. 89 193501
[11] Nakajima A, Sumida Y, Dhyani M H and Kawai H 2011 IEEE Electron Device Lett. 32 542
[12] Nakajima A, Dhyani M H, Narayanan E M S, Sumida Y and Kawai H 2011 Proc. 23rd Int. Symp. Power Semiconductor Devices and ICs (San Diego CA 23–26 May 2011) p 280
[13] Nakajima A, Unni V, Menon K G, Dhyani M H, Narayanan E M S, Sumida Y and Kawai H 2012 Proc. 24th Int. Symp. Power Semiconductor Devices and ICs (Bruges Belgium 3–7 June 2012) p 265
[14] Ishida H, Shibata D, Yanagihara M, Uemoto Y, Matsuo H, Ueda T, Tanaka T and Ueda D 2008 IEEE Electron Device Lett. 29 1087
[15] Ishida H, Shibata D, Matsuo H, Yanagihara M, Uemoto Y, Ueda T, Tanaka T and Ueda D 2008 Electron. Devices Meeting (San Francisco CA 15–17 December 2008) p 1
[16] Yan J D, Wang X L, Wang Q, Qu S Q, Xiao H L, Peng E C, Kang H, Wang C M, Feng C, Yin H B, Jiang L J, Li B Q, Wang Z G and Hou X 2014 J. Appl. Phys. 116 054502
[17] Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, B and Eastman L F 2002 J. Phys.: Condens. Matter 14 3399
[18] Mustafa N A, Granzner R, Polyakov V, Racko J, Mikolá?ek M, Breza J and Schwierz F 2012 J. Appl. Phys. 111 044512
[19] Chen W J, Wong K Y, Huang W and Chen K J 2008 Appl. Phys. Lett. 92 253501
[20] Wang Z, Zhang B, Chen W and Li Z 2013 IEEE Trans. Electron Devices 60 1607
[21] Mizutani T, Ito M, Kishimoto S and Nakamura F 2007 IEEE Electron Device Lett. 28 549
[22] Mizutani T, Yamada H, Kishimoto S and Nakamura F 2013 J. Appl. Phys. 113 034502
[23] Joh J, Del Alamo J A and Jimenez J 2008 IEEE Electron Device Lett. 29 665
[24] Mizutani T, Ohno Y, Akita M, Kishimoto S and Maezawa K 2003 IEEE Trans. Electron Devices 50 2015
[25] Nakajima A, Sumida Y, Dhyani M H, Kawai H and Narayanan E M S 2010 Appl. Phys. Express 3 121004
[26] Nakajima A, Liu P, Ogura M, Makino T, Kakushima K, Nishizawa S i, Ohashi H, Yamasaki S and H Iwai 2014 J. Appl. Phys. 115 153707
[27] Uemoto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T and Ueda D 2007 IEEE Trans. Electron Devices 54 3393
[28] Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Devices 48 560
[29] Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60
[30] Cai Y, Zhou Y, Lau K and Chen K J 2006 IEEE Trans. Electron Devices 53 2207
Related articles from Frontiers Journals
[1] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 127301
[2] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 127301
[3] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 127301
[4] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 127301
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 127301
[6] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 127301
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 127301
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 127301
[9] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 127301
[10] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 127301
[11] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 127301
[12] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 127301
[13] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 127301
[14] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 127301
[15] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 127301
Viewed
Full text


Abstract