FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Novel Algorithm for the Sound Field of Rectangular-Shaped Transducers |
DING De-Sheng1**, SHEN Chang-Sheng1, LU Hua2 |
1School of Electronic Science and Engineering, Southeast University, Nanjing 210096 2State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096
|
|
Cite this article: |
DING De-Sheng, SHEN Chang-Sheng, LU Hua 2015 Chin. Phys. Lett. 32 124304 |
|
|
Abstract An alternative extension to the Gaussian-beam expansion technique is provided to simplify the computation of the Fresnel field integral for rectangular symmetric sources. From a known result that the circle or rectangle function is approximately decomposed into a sum of Gaussian functions, the cosine function is similarly expanded by the Bessel–Fourier transform. Two expansions are together inserted in this field integral, it is then expressible in terms of the simple algebraic functions. As examples, the numerical results for the sound pressure field are presented for the uniform rectangular piston transducer, in a good agreement with those directly evaluated from the Fresnel integral. A wide applicability of this approach is discussed in treatment of the ultrasonic field radiation problem for a large and important group of piston sources in acoustics.
|
|
Received: 08 October 2015
Published: 05 January 2016
|
|
PACS: |
43.20.Rz
|
(Steady-state radiation from sources, impedance, radiation patterns, boundary element methods)
|
|
43.20.Bi
|
(Mathematical theory of wave propagation)
|
|
43.20.El
|
(Reflection, refraction, diffraction of acoustic waves)
|
|
|
|
|
[1] Cook B D and Arnoult III W J 1976 J. Acoust. Soc. Am. 59 9 [2] Cook B D and Cavanagh E 1980 J. Acoust. Soc. Am. 67 1136 [3] Wen J J and Breazeale M A 1988 J. Acoust. Soc. Am. 83 1752 [4] Thompson R B, Gray T A, Rose J H, Kogan V G and Lopes R F 1987 J. Acoust. Soc. Am. 82 1818 [5] Ding D S, Lin J B, Shui Y A, Du G H and Zhang D 1993 Acta Acust. 18 249 (in Chinese) [6] Ding D S and Lu Z H 1996 Chin. J. Acoust. 15 213 [7] Prange M D and Shenoy R G 1996 Ultrasonics 34 117 [8] Ding D and Liu X 1999 J. Opt. Soc. Am. A 16 1286 [9] Spies M 1999 J. Acoust. Soc. Am. 105 633 [10] Huang D and Breazeale M A 1999 J. Acoust. Soc. Am. 106 1771 [11] Zhang Y, Liu J Q and Ding D S 2002 Chin. Phys. Lett. 19 1825 [12] Ding D, Zhang Y and Liu J 2003 J. Acoust. Soc. Am. 113 3043 [13] Ding D S and Lu Z H 1996 Acta Acust. 21 suppl. 4 421 (in Chinese) [14] Ding D and Zhang Y 2004 J. Acoust. Soc. Am. 116 1401 [15] Ding D, Shui Y, Lin J and Zhang D 1996 J. Acoust. Soc. Am. 100 727 [16] Ding D S and Lu Z H 1996 Nonlinear Acoustics in Perspective: Proceedings of the 14th International Symposium on Nonlinear Acoustics ed Wei R J (Nanjing: Nanjing University Press) p 183 [17] Matar O B, Rernenieras J P, Bruneel C, Roncin A and Patat F 1998 Ultrasonics 36 391 [18] Ding D 2000 J. Acoust. Soc. Am. 108 2759 [19] Ding D S and Zhang Y 2004 Chin. Phys. Lett. 21 503 [20] Ding D 2004 J. Acoust. Soc. Am. 115 35 [21] Fox P D, Cheng J and Lu J Y 2002 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49 1179 [22] Ding D and Xu J 2006 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 246 [23] Ding D, Tong X and He P 2005 J. Acoust. Soc. Am. 118 608 [24] Kim H J, Schmerr L W and Sedov A 2006 J. Acoust. Soc. Am. 119 1971 [25] Liu W and Yang J 2010 Chin. Phys. Lett. 27 124301 [26] Ding D S, Liu X J and Huang J H 2008 Prog. Acoust. Chin. (in Chinese) ed Cheng J C and Tian J (Bejing: Science Press) p 55 [27] Dai Y R and Ding D S 2012 Chin. Phys. Lett. 29 024301 [28] Freedman A 1960 J. Acoust. Soc. Am. 32 197 [29] Marini J and Rivenez J 1974 Ultrasonics 12 251 [30] Mast T D 2009 J. Acoust. Soc. Am. 126 3311 [31] Greenspan M 1979 J. Acoust. Soc. Am. 65 608 [32] Ding D S, Lu H and Shen C S 2014 Chin. Phys. Lett. 31 064301 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|