Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 124303    DOI: 10.1088/0256-307X/32/12/124303
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The V(z) Inversion Technique for Evaluation of an Adhesively Bonded Structure
LIU Jing1,2,3, XU Wei-Jiang1**, HU Wen-Xiang2, OURAK Mohamed1, DUBOIS Andre3
1Institut d'Electronique de Microélectronique et de Nanotechnologie, UMR CNRS 8520, Département DOAE, Université de Valenciennes, Valenciennes 59313, France
2Institute of Acoustics, Tongji University, Shanghai 200092
3Laboratoire d'Automatique de Mécanique et d'Informatique Industrielles et Humaines, UMR CNRS 8201, Université de Valenciennes, Valenciennes 59313, France
Cite this article:   
LIU Jing, XU Wei-Jiang, HU Wen-Xiang et al  2015 Chin. Phys. Lett. 32 124303
Download: PDF(847KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the fact that the evolution trace in incident angle and frequency of the resonance zeros of the reflection coefficient function for a water charged layered medium is equivalent to its guided wave mode dispersion, the interfacial adhesion of a three-layer aluminum–adhesive–aluminum bonding structure is characterized nondestructively by determining the interface shear stiffness kt associated with the interfacial strength. The resonance reflection function is obtained experimentally by the V(z) inversion technique using an ultrasonic focused transducer of wide-band and large angular aperture (up to ±45°). The dispersion curves are numerically calculated, adjusting the parameter kt so that the difference between the dispersion curves and the angular-frequency tracing of the reflection zeros is minimum. The parameter kt at an interface of weakly adhered aluminum epoxy-resin is estimated to be 1014 N/m3.

Received: 21 September 2015      Published: 05 January 2016
PACS:  43.40.Le (Techniques for nondestructive evaluation and monitoring, acoustic emission)  
  43.35.Cg (Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in solids; elastic constants)  
  43.58.-e (Acoustical measurements and instrumentation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/124303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/124303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jing
XU Wei-Jiang
HU Wen-Xiang
OURAK Mohamed
DUBOIS Andre

[1] Brown H R 2000 Mater. Forum 24 49
[2] Awaja F, Gilbert M, Kelly G, Fox B and Pigram P J 2009 Prog. Poly. Sci. 34 948
[3] Veselovsky R A and Kestelman V N 2002 Adhesion Polymers (New York: McGraw-Hill) chap 9 p 342
[4] Li M X, Wang X M and An Z W 2013 Appl. Acoust. 32 190 (in Chinese)
[5] Pilarski A and Rose J L 1988 J. Appl. Phys. 63 300
[6] Pialucha T and Cawley P 1994 J. Acoust. Soc. Am. 96 1651
[7] Baik J M and Thompson R B 1984 J. Nondestr. Eval. 4 177
[8] Chimenti D E and Rokhlin S I 1990 J. Acoust. Soc. Am. 88 1603
[9] Crom B L and Castaings M 2010 J. Acoust. Soc. Am. 127 2220
[10] Atalar A 1978 J. Appl. Phys. 49 5130
[11] Kushibiki J I and Chubachi N 1985 IEEE Trans. Sonics Ultrason. SU-32 189
[12] Xü W J and Ourak M 1997 NDT&E Int. 30 75
[13] Xü W J, Ourak M, Lematre M and Bourse G 2000 AIP Conference Proceedings (Montreal, Canada 25–30 July 1999) p 1183
[14] Liang K K, Kino G S and Khuri-Yakub B T 1985 IEEE Trans. Sonics Ultrason. SU-32 213
[15] Bourse G, Xü W J, Mouftiez A, Vandevoorde L and Ourak M 2012 NDT&E Int. 45 22

Related articles from Frontiers Journals
[1] ZHANG Hui, ZHANG Shu-Yi, FAN Li. Effects of Thickness Deviation of Elastic Plates in Multi-Layered Resonance Systems on Frequency Spectra[J]. Chin. Phys. Lett., 2009, 26(8): 124303
Viewed
Full text


Abstract