Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 121204    DOI: 10.1088/0256-307X/32/12/121204
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Sensitivity of Pion versus Parton-Jet Nuclear Modification Factors to the Path-Length Dependence of Jet-Energy Loss at RHIC and LHC
Barbara Betz1, Miklos Gyulassy2,3**
1Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Frankfurt am Main 60438, Germany
2Department of Physics, Columbia University, New York 10027, USA
3Institute of Particle Physics, Central China Normal University, Wuhan 430079
Cite this article:   
Barbara Betz, Miklos Gyulassy 2015 Chin. Phys. Lett. 32 121204
Download: PDF(494KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We compare the jet-path length and beam-energy dependence of the pion nuclear modification factor and a parton-jet nuclear modification factor at RHIC and LHC, and contrast the predictions based on a linear pQCD and a highly non-linear hybrid AdS holographic model of jet-energy loss. It is found that both models require a reduction of the jet-medium coupling from RHIC to LHC to account for the measured pion nuclear modification factor. In the case of the parton-jet nuclear modification factor, however, which serves as a lower bound for the LO jet nuclear modification factor of reconstructed jets, the extracted data can be characterized without a reduced jet-medium coupling at LHC energies. It is concluded that when the reconstructed jets are sensitive to both quarks and gluons and thus provide more information than the pion nuclear modification factor, their information regarding the jet-medium coupling is limited due to the superposition with NLO and medium effects. Hence, a detailed description of the underlying physics requires both the leading hadron and the reconstructed jet nuclear modification factor. Unfortunately, the results for both the pion and the parton-jet nuclear modification factor are insensitive to the jet-path dependence of the models considered.

Received: 12 August 2015      Published: 05 January 2016
PACS:  12.38.Mh (Quark-gluon plasma)  
  25.75.Bh (Hard scattering in relativistic heavy ion collisions ?)  
  11.25.Tq (Gauge/string duality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/121204       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/121204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Barbara Betz
Miklos Gyulassy

[1] (JET) Topical Collaboration on Jet and Electromagnetic Tomography, http://jet.lbl.gov/main
[2] Gyulassy M 2009 Physics 2 107
     Betz B 2012 Eur. Phys. J. A 48 164
     Jacak B V and Muller B 2012 Science 337 310
[3] Adare A 2013 Phys. Rev. C 87 034911
[4] Betz B and Gyulassy M 2014 J. High Energy Phys. 1408 090
[5] Xu J, Buzzatti A and Gyulassy M 2014 J. High Energy Phys. 1408 063
     Xu J et al 2015 Chin. Phys. Lett. 32 097501
[6] Horowitz W A and Gyulassy M 2011 Nucl. Phys. A 872 265
     Horowitz W A and Gyulassy M 2011 J. Phys. G 38 124114
     Horowitz W A 2012 AIP Conf. Proc. 1441 889
[7] Jia J, Horowitz W A and Liao J 2011 Phys. Rev. C 84 034904
     Jia J and Wei R 2010 Phys. Rev. C 82 024902
[8] Renk T 2012 Phys. Rev. C 85 044903
     Renk T, Holopainen H, Paatelainen R and Eskola K J 2011 Phys. Rev. C 84 014906
[9] Marquet C and Renk T 2010 Phys. Lett. B 685 270
[10] Betz B and Gyulassy M 2012 Phys. Rev. C 86 024903
[11] Betz B, Gyulassy M and Torrieri G 2011 Phys. Rev. C 84 024913
[12] Buzzatti A and Gyulassy M 2013 Nucl. Phys. A 904 779c
       Buzzatti A and Gyulassy M 2012 Phys. Rev. Lett. 108 022301
[13] Gyulassy M, Vitev I, Wang X N and Zhang B W 2003 Quark Gluon Plasma (Singapore: World Scientific) p 123
       Gyulassy M 2002 Lect. Notes Phys. 583 37
       Vitev I and Gyulassy M 2002 Phys. Rev. Lett. 89 252301
       Gyulassy M, Levai P and Vitev I 2001 Nucl. Phys. B 594 371
       Wang X N and Gyulassy M 1992 Phys. Rev. Lett. 68 1480
[14] Baier R, Dokshitzer Y L, Mueller A H, Peigne S and Schiff D 1997 Nucl. Phys. B 484 265
       Wiedemann U A 2000 Nucl. Phys. B 588 303
       Arnold P B, Moore G D and Yaffe L G 2001 J. High Energy Phys. 0111 057
       Majumder A, Wang E and Wang X N 2007 Phys. Rev. Lett. 99 152301
       Chesler P M, Jensen K and Karch A 2009 Phys. Rev. D 79 025021
[15] Zakharov B G 2013 JETP Lett. 96 616
       Zakharov B G 2008 JETP Lett. 88 781
       Zakharov B G 2013 J. Phys. G 40 085003
[16] Molnar D and Sun D 2013 Nucl. Phys. A 910 486
[17] Liao J and Shuryak E 2009 Phys. Rev. Lett. 102 202302
       Zhang X and Liao J 2014 Phys. Rev. C 89 014907
       Zhang X and Liao J 2013 Phys. Rev. C 87 044910
[18] Djordjevic M, Djordjevic M and Blagojevic B 2014 Phys. Lett. B 737 298
       Djordjevic M and Gyulassy M 2004 Nucl. Phys. A 733 265
       Wicks S, Horowitz W, Djordjevic M and Gyulassy M 2007 Nucl. Phys. A 784 426 [WHDG]
[19] Casalderrey-Solana J, Gulhan D C, Milhano J G, Pablos D and Rajagopal K 2014 J. High Energy Phys. 1410 19
[20] Chesler P M and Rajagopal K 2014 Phys. Rev. D 90 025033
[21] Casalderrey-Solana J, Gulhan D C, Milhano J G, Pablos D and Rajagopal K private communication
[22] Renk T 2013 Nucl. Phys. A 910 43
[23] Ficnar A, Gubser S S and Gyulassy M 2014 Phys. Lett. B 738 464
       Ficnar A and Gubser S S 2014 Phys. Rev. D 89 026002
       Ficnar A, Noronha N and Gyulassy M 2013 Nucl. Phys. A 910 252
[24] Gubser S S et al 2008 J. High Energy Phys. 0810 052
       Chesler P M et al 2009 Phys. Rev. D 79 125015
       Ficnar A 2012 Phys. Rev. D 86 046010
[25] Abelev B et al 2013 Phys. Lett. B 720 52
       Abelev B et al 2013 Phys. Lett. B 719 18
[26] Chatrchyan S et al 2012 Eur. Phys. J. C 72 1945
[27] CMS Collaboration, CMS-PAS-HIN-12-004
[28] Song H and Heinz U W 2008 Phys. Rev. C 77 064901
       Song H and Heinz U W 2008 Phys. Rev. C 78 024902
       Shen C, Heinz U, Huovinen P and Song H 2011 Phys. Rev. C 84 044903
       Qiu Z, Shen C and Heinz U 2012 Phys. Lett. B 707 151
       Shen C, Heinz U, Huovinen P and Song H 2010 Phys. Rev. C 82 054904
[29] Betz B, Noronha J, Torrieri G, Gyulassy M, Mishustin I and Rischke D H 2009 Phys. Rev. C 79 034902
[30] Kniehl B A, Kramer G and Potter B 2001 Nucl. Phys. B 597 337
[31] Simon F 2006 AIP Conf. Proc. 870 428
[32] Djordjevic M and Djordjevic M 2014 J. Phys. G 41 055104
[33] Cacciari M, Salam G P and Soyez G 2012 Eur. Phys. J. C 72 1896
[34] He Y, Vitev I and Zhang B W 2012 Phys. Lett. B 713 224

Related articles from Frontiers Journals
[1] Shanjin Wu, Chun Shen, and Huichao Song. Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review[J]. Chin. Phys. Lett., 2021, 38(8): 121204
[2] Zonghou Han , Baoyi Chen , and Yunpeng Liu. Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density[J]. Chin. Phys. Lett., 2020, 37(11): 121204
[3] Jing-Ya Zhang, Luan Cheng. Strong Interaction Effect on Jet Energy Loss with Detailed Balance[J]. Chin. Phys. Lett., 2017, 34(10): 121204
[4] Liang-Kai Wu, Xiang-Fei Meng, Fa-Ling Zhang. Curvature of Pseudocritical Transition Line for Two-Flavor QCD with Improved Kogut–Susskind Quarks[J]. Chin. Phys. Lett., 2017, 34(4): 121204
[5] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 121204
[6] SHI Chao-Yi, ZHU Jia-Qing, MA Zhi-Lei, LI Yun-De. Thermal Width for Heavy Quarkonium in the Static Limit[J]. Chin. Phys. Lett., 2015, 32(12): 121204
[7] MA Zhi-Lei, ZHU Jia-Qing, SHI Chao-Yi, LI Yun-De. Quark Loop Contribution to the Gluon Damping Rate in Hot QCD[J]. Chin. Phys. Lett., 2015, 32(12): 121204
[8] Jiechen Xu, Jinfeng Liao, Miklos Gyulassy. Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas[J]. Chin. Phys. Lett., 2015, 32(09): 121204
[9] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 121204
[10] CAI Yan-Bing, YANG Hai-Tao, LI Yun-De. Production of High-pT Kaon and Pion in pp and Au–Au Collisions by Resolved Photoproduction Processes[J]. Chin. Phys. Lett., 2015, 32(08): 121204
[11] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 121204
[12] YU Gong-Ming, LI Yun-De. Photoproduction of Light Vector Meson in Relativistic Heavy Ion Collisions[J]. Chin. Phys. Lett., 2014, 31(1): 121204
[13] P. Guptaroy, S. Guptaroy. Direct Photon Production at RHIC and LHC-Energies: Measured Data Versus a Model[J]. Chin. Phys. Lett., 2013, 30(6): 121204
[14] LI Han-Lin, ZHANG Ben-Wei, WANG En-Ke. Jet Energy Shift due to Non-Perturbative QCD Effects in p+p Collisions Studied with PYTHIA[J]. Chin. Phys. Lett., 2013, 30(5): 121204
[15] TANG Ze-Bo, YI Li, RUAN Li-Juan, SHAO Ming, LI Cheng, CHEN Hong-Fang, Bedanga Mohanty, XU Zhang-Bu. The Statistical Origin of Constituent-Quark Scaling in QGP Hadronization[J]. Chin. Phys. Lett., 2013, 30(3): 121204
Viewed
Full text


Abstract