Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 121101    DOI: 10.1088/0256-307X/32/12/121101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential
XU Shu-Sheng1,4, JIANG Yu2, SHI Chao1,4, CUI Zhu-Fang1,4, ZONG Hong-Shi1,3,4**
1Department of Physics, Nanjing University, Nanjing 210093
2Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004
3Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093
4State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
XU Shu-Sheng, JIANG Yu, SHI Chao et al  2015 Chin. Phys. Lett. 32 121101
Download: PDF(471KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Generally speaking, the quark propagator is dependent on the quark chemical potential in the dense quantum chromodynamics (QCD). By means of the generating functional method, we prove that the quark propagator actually depends on p4+iμ from the first principle of QCD. The relation between quark number density and quark condensate is discussed by analyzing their singularities. It is concluded that the quark number density has some singularities at certain μ when T=0, and the variations of the quark number density as well as the quark condensate are located at the same point. In other words, at a certain μ the quark number density turns to nonzero, while the quark condensate begins to decrease from its vacuum value.

Received: 17 August 2015      Published: 05 January 2016
PACS:  11.30.Rd (Chiral symmetries)  
  25.75.Nq (Quark deconfinement, quark-gluon plasma production, and phase transitions)  
  12.38.Mh (Quark-gluon plasma)  
  12.39.-x (Phenomenological quark models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/121101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/121101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Shu-Sheng
JIANG Yu
SHI Chao
CUI Zhu-Fang
ZONG Hong-Shi

[1] Xu S S, Yan Y, Cui Z F and Zong H S 2015 arXiv:1506.06846 [hep-ph]
[2] Takahashi J, Sugano J, Ishii M, Kouno H and Yahiro M 2014 arXiv:1410.8279
[3] Nagata K 2012 arXiv:1204.6480
[4] Haque N, Mustafa M G and Strickland M 2013 J. High Energy Phys. 1307 184
[5] Takahashi J, Kouno H and Yahiro M 2015 Phys. Rev. D 91 014501
[6] Andersen J O, Mogliacci S, Su N and Vuorinen A 2013 Phys. Rev. D 87 074003
[7] Miura K, Lombardo M P and Pallante E 2012 Phys. Lett. B 710 676
[8] Bhattacharya T, Buchoff M I, Christ N H, Ding H T, Gupta R, Jung C, Karsch F, Lin Z, Mawhinney R D, McGlynn G, Mukherjee S, Murphy D, Petreczky P, Renfrew D, Schroeder C, Soltz R A, Vranas P M and Yin H 2014 Phys. Rev. Lett. 113 082001
[9] Kaczmarek O, Karsch F, Laermann E, Miao C, Mukherjee S, Petreczky P, Schmidt C, Soeldner W and Unger W 2011 Phys. Rev. D 83 014504
[10] Yin P l, Cui Z F, Feng H T and Zong H S 2014 Ann. Phys. 348 306
[11] Bazavov A, Bhattacharya T, Cheng M, DeTar C, Ding H T, Gottlieb S, Gupta R, Hegde P, Heller U M, Karsch F, Laermann E, Levkova L, Mukherjee S, Petreczky P, Schmidt C, Soltz R A, Soeldner W, Sugar R, Toussaint D, Unger W and Vranas P 2012 Phys. Rev. D 85 054503
[12] Cui Z F, Shi C, Xia Y H, Jiang Y and Zong H S 2013 Eur. Phys. J. C 73 2612
[13] Morais J, Moreira J, Hiller B, Blin A and Osipov A 2014 arXiv:1411.3203
[14] Xu J, Song T, Ko C M and Li F 2014 Phys. Rev. Lett. 112 012301
[15] Zhu H X, Sun W M and Zong H S 2013 Chin. Phys. Lett. 30 051201
[16] Xin X Y, Qin S X and Liu Y X 2014 Phys. Rev. D 90 076006
[17] Wang B, Wang Y L, Cui Z F and Zong H S 2015 Phys. Rev. D 91 034017
[18] Xu S S, Cui Z F, Wang B, Shi Y M, Yang Y C and Zong H S 2015 Phys. Rev. D 91 056003
[19] Jiang Y, Hou F Y, Luo C B and Zong H S 2015 Chin. Phys. Lett. 32 021201
[20] Tian Y L, Cui Z F, Wang B, Shi Y M, Yang Y C and Zong H S 2015 Chin. Phys. Lett. 32 081101
[21] Maris P, Roberts C D and Tandy P C 1998 Phys. Lett. B 420 267
[22] Gavai R V, Potvin J and Sanielevici S 1989 Phys. Rev. D 40 2743
[23] Gottlieb S, Liu W, Renken R L, Sugar R L and Toussaint D 1988 Phys. Rev. D 38 2888
[24] He M, Li J F, Sun W M and Zong H S 2009 Phys. Rev. D 79 036001
[25] Cui Z F, Hou F Y, Shi Y M, Wang Y L and Zong H S 2015 Ann. Phys. (N. Y.) 358 172
[26] Qin S X, Chang L, Chen H, Liu Y X and Roberts C D 2011 Phys. Rev. Lett. 106 172301
[27] Zong H S and Sun W M 2008 Phys. Rev. D 78 054001
[28] Fraga E S and Romatschke P 2005 Phys. Rev. D 71 105014
[29] Andersen J O and Strickland M 2002 Phys. Rev. D 66 105001
[30] Halasz M A, Jackson A D, Shrock R E, Stephanov M A and Verbaarschot J J M 1998 Phys. Rev. D 58 096007

Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 121101
[2] Lan-Lan Gao and Xu-Guang Huang. Chiral Anomaly in Non-Relativistic Systems: Berry Curvature and Chiral Kinetic Theory[J]. Chin. Phys. Lett., 2022, 39(2): 121101
[3] Jia-Nan Rong, Liang Chen, and Kai Chang. Chiral Anomaly-Enhanced Casimir Interaction between Weyl Semimetals[J]. Chin. Phys. Lett., 2021, 38(8): 121101
[4] Si-Xue Qin and Craig D. Roberts. Resolving the Bethe–Salpeter Kernel[J]. Chin. Phys. Lett., 2021, 38(7): 121101
[5] Si-Xue Qin and C. D. Roberts. Impressions of the Continuum Bound State Problem in QCD[J]. Chin. Phys. Lett., 2020, 37(12): 121101
[6] WANG Xiu-Zhen, LI Jian-Feng, YU Xin-Hua, FENG Hong-Tao. Critical Behavior of Dynamical Chiral Symmetry Breaking with Gauge Boson Mass in QED3[J]. Chin. Phys. Lett., 2015, 32(11): 121101
[7] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 121101
[8] XIA Cheng-Jun, PENG Guang-Xiong, HOU Jia-Xun. Finite Size Effect on the in-Medium Chiral Condensate at Finite Density[J]. Chin. Phys. Lett., 2014, 31(04): 121101
[9] DAI Lian-Rong. The Prediction of Possible Nonstrange Dibaryon[J]. Chin. Phys. Lett., 2014, 31(1): 121101
[10] CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3[J]. Chin. Phys. Lett., 2012, 29(5): 121101
[11] DAI Lian-Rong. Nucleon-Nucleon Interaction and the Mixing of Scalar Meson[J]. Chin. Phys. Lett., 2010, 27(1): 121101
[12] MU Cheng-Fu, SUN Gao-Feng, ZHUANG Peng-Fei. Neutrino Oscillation Induced by Chiral Phase Transition[J]. Chin. Phys. Lett., 2009, 26(3): 121101
[13] WANG Shun-Zhi, WANG Qing,. Electroweak Chiral Lagrangian for Neutral Higgs Boson[J]. Chin. Phys. Lett., 2008, 25(6): 121101
[14] LU Ran, WANG Qing. Equivalence of Different Descriptions for η Particle in Simplest Little Higgs Model[J]. Chin. Phys. Lett., 2007, 24(12): 121101
[15] DAI Lian-Rong, ZHANG Zong-Ye, YU You-Wen&sup,. Structure of Di-Ω Dibaryon[J]. Chin. Phys. Lett., 2006, 23(12): 121101
Viewed
Full text


Abstract