Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 120502    DOI: 10.1088/0256-307X/32/12/120502
GENERAL |
Synchronization in the Uncoupled Neuron System
ZHANG Ji-Qian**, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng
College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000
Cite this article:   
ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao et al  2015 Chin. Phys. Lett. 32 120502
Download: PDF(762KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the model of Hindmarsh–Rose neurons, we study the synchronous behavior of the firing patterns in an uncoupled cell system. In this work, the membrane current Iext is selected as a controllable parameter, whose initial values for all N cells are set to be near one of the bifurcation points randomly. It is found that the system will show un-synchronous state when the external stimuli is absent, otherwise, full synchrony will appear, even though without any coupling connection among these N neurons, indicating the occurrence of uncoupled synchrony. Moreover, similar behavior could also be observed when these neurons are set to be near other bifurcation points. The synchronous error is calculated for discussing this uncoupled synchrony behavior. Finally, we find that such synchrony may have some inherent relevance with the decrease of phase difference between different cells. Our results suggest that biological neuron systems may achieve an effective response to external feeble stimulus by the mode of uncoupled synchrony instead of only by the coupled scheme.
Received: 06 September 2015      Published: 05 January 2016
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  68.35.Rh (Phase transitions and critical phenomena)  
  87.17.Aa (Modeling, computer simulation of cell processes)  
  87.15.Zg (Phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/120502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/120502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ji-Qian
HUANG Shou-Fang
PANG Si-Tao
WANG Mao-Sheng
GAO Sheng
[1] Brette R 2012 PLoS Comput. Biol. 8 e1002561
[2] Toutounji H and Pipa G 2014 PLoS Comput. Biol. 10 e1003512
[3] Gong Y B, Lin X, Wang L and Hao Y H 2011 Sci. Chin. Chem. 54 1498
[4] Liang L S, Zhang J Q, Liu L Z and Huang S F 2014 Chin. Phys. Lett. 31 050502
[5] Wang M S, Sun R Z, Huang W X, Tu Y B and Zhang J Q 2013 Commun. Theor. Phys. 60 545
[6] Zou Y Y and Li H H 2014 Chin. Phys. Lett. 31 100501
[7] Zhou J, Wu X Q, Yu W W, Small M and Lu J A 2008 Chaos 18 043111
[8] Qin H X, Ma J, Jin W Y and Wang C N 2014 Commun. Theor. Phys. 62 755
[9] Wiessenfeld K, Colet P and Strogatz S H 1996 Phys. Rev. Lett. 76 404
[10] Engel A K, Kreiter A K, Konig P and Singer W 1991 Proc. Natl. Acad. Sci. USA 88 6048
[11] Jouaville L S, Ichas F, Holmuhamedov E L and Mazat J P 1995 Nature 377 438
[12] Wang Q Y, Chen G R and Perc M 2011 PLoS ONE 6 e15851
[13] Gómez G J, Zamora L G, Moreno Y and Arenas A 2010 PLoS ONE 5 e12313
[14] Nicolelis M A L, Baccala L A, Lin R C S and Chapin J K 1995 Science 268 1353
[15] Uhlhaas P J and Singer W 2006 Neuron 52 155
[16] Hu B and Zhou C S 2000 Phys. Rev. E 61 R1001
[17] Buehlmann A and Deco G 2010 PLoS Comput. Biol. 6 e1000934
[18] Wang M S, Hou Z H and Xin H W 2006 ChemPhysChem 7 579
[19] Perc M 2009 Biophys. Chem. 141 175
[20] Memmesheimer R M and Timme M 2012 PLoS Comput. Biol. 8 e1002384
[21] Zhang J Q, Chen H S and Wang M S 2008 Commun. Theor. Phys. 50 903
[22] Ma J, Qin H X, Song X L and Chu R 2015 Int. J. Mod. Phys. B 29 1450239
[23] Shrii M M, Senthilkumar D V and Kurths J 2012 Europhys. Lett. 98 10003
[24] Tang J, Ma J, Yi M, Xia H and Yang X Q 2011 Phys. Rev. E 83 046207
[25] Wang Q Y, Duan Z S, Perc M and Chen G R 2008 Europhys. Lett. 83 50008
[26] Zhang J Q, Wang C D, Wang M S and Huang S F 2011 Neurocomputing 74 2961
[27] Wei D Q, Luo X S and Qin Y H 2008 Physica A 387 2155
[28] Batista C A S, Viana R L, Ferrari F A S, Lopes S R, Batista A M and Coninck J C P 2013 Phys. Rev. E 87 042713
[29] Chen H S, He G, Huang F and Hou Z H 2013 Chaos 23 033124
[30] Gray C M, Koening P and Engel A K 1989 Nature 338 334
[31] He D H, Shi P and Stone L 2003 Phys. Rev. E 67 027201
[32] Wu Y, Xu J X, Jin W Y and Hong L 2007 Chin. Phys. Lett. 24 3066
[33] Nakao H, Arai K and Kawamura Y 2007 Phys. Rev. Lett. 98 184101
[34] Hindmarsh J L and Rose R M 1994 Philos. Trans. R. Soc. B 346 129
Related articles from Frontiers Journals
[1] Liang Zhang, Tian Tian, Pu Huang, Shaochun Lin, Jiangfeng Du. Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice[J]. Chin. Phys. Lett., 2020, 37(1): 120502
[2] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 120502
[3] Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai, Hai-Hong Li. The Ott–Antonsen Ansatz in Globally Coupled Phase Oscillators[J]. Chin. Phys. Lett., 2016, 33(07): 120502
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 120502
[5] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 120502
[6] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 120502
[7] SONG Xin-Fang, WANG Wen-Yuan. Target Inactivation and Recovery in Two-Layer Networks[J]. Chin. Phys. Lett., 2015, 32(11): 120502
[8] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 120502
[9] FENG Yue-E, LI Hai-Hong. The Dependence of Chimera States on Initial Conditions[J]. Chin. Phys. Lett., 2015, 32(06): 120502
[10] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 120502
[11] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 120502
[12] YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian. Change of State of a Dynamical Unit in the Transition of Coherence[J]. Chin. Phys. Lett., 2015, 32(01): 120502
[13] G. Sivaganesh. An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits[J]. Chin. Phys. Lett., 2015, 32(01): 120502
[14] ZOU Ying-Ying, LI Hai-Hong. Paths to Synchronization on Complex Networks with External Drive[J]. Chin. Phys. Lett., 2014, 31(10): 120502
[15] FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong. Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks[J]. Chin. Phys. Lett., 2014, 31(08): 120502
Viewed
Full text


Abstract