Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 107401    DOI: 10.1088/0256-307X/32/10/107401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
New Superconductivity Dome in LaFeAsO1−xFx Accompanied by Structural Transition
YANG Jie1, ZHOU Rui1, WEI Lin-Lin1, YANG Huai-Xin1, LI Jian-Qi1, ZHAO Zhong-Xian1, ZHENG Guo-Qing1,2**
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Physics, Okayama University, Okayama 700-8530, Japan
Cite this article:   
YANG Jie, ZHOU Rui, WEI Lin-Lin et al  2015 Chin. Phys. Lett. 32 107401
Download: PDF(1424KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High-temperature superconductivity is often found in the vicinity of antiferromagnetism. This is also true in LaFeAsO1−xFx (x≤0.2) and many other iron-based superconductors, which leads to proposals that superconductivity is mediated by fluctuations associated with the nearby magnetism. Here we report the discovery of a new superconductivity dome without low-energy magnetic fluctuations in LaFeAsO1−xFx with 0.25≤x≤0.75, where the maximal critical temperature Tc at xopt=0.5–0.55 is even higher than that at x ≤0.2. By nuclear magnetic resonance and transmission electron microscopy, we show that a C4 rotation symmetry-breaking structural transition takes place for x>0.5 above Tc. Our results point to a new paradigm of high temperature superconductivity.

Received: 31 August 2015      Published: 30 October 2015
PACS:  74.25.nj (Nuclear magnetic resonance)  
  74.70.Xa (Pnictides and chalcogenides)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/107401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/107401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Jie
ZHOU Rui
WEI Lin-Lin
YANG Huai-Xin
LI Jian-Qi
ZHAO Zhong-Xian
ZHENG Guo-Qing

[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Mathur N D et al 1998 Nature 394 39
[3] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[4] Ren Z A et al 2008 Chin. Phys. Lett. 25 2215
[5] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[6] Sefat A S et al 2008 Phys. Rev. Lett. 101 117004
[7] Zhou R et al 2013 Nat. Commun. 4 2265
[8] Ren Z A et al 2008 Europhys. Lett. 83 17002
[9] Ning F L et al 2010 Phys. Rev. Lett. 104 037001
[10] Oka T et al 2012 Phys. Rev. Lett. 108 047001
[11] Li Z et al 2011 Phys. Rev. B 83 140506(R)
[12] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[13] Kuroki K et al 2008 Phys. Rev. Lett. 101 087004
[14] Graser S et al 2010 Phys. Rev. B 81 214503
[15] Luetkens H et al 2009 Nat. Mater. 8 305
[16] Lu W et al 2008 Solid State Commun. 148 168
[17] Iimura S et al 2012 Nat. Commun. 3 943
[18] Narath A 1967 Phys. Rev. 162 320
[19] More data will be presented in a separate work.
[20] Matano K et al 2008 Europhys. Lett. 83 57001
[21] Abragam A 1961 The Principles of Nuclear Magnetism (Oxford: Oxford University Press)
[22] Fu M et al 2012 Phys. Rev. Lett. 109 247001
[23] Ma C et al 2008 Europhys. Lett. 84 47002
[24] de la Cruz C et al 2008 Nature 453 899
[25] Chu J H et al 2010 Science 329 824
[26] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[27] Fernandes R M, Bohmer A E, Meingast C and Schmalian J 2013 Phys. Rev. Lett. 111 137001
[28] Nakai Y, Kitagawa S and Ishida K 2009 New J. Phys. 11 045004
[29] Kontani H and Onari S 2010 Phys. Rev. Lett. 104 157001
[30] Chen C C et al 2010 Phys. Rev. B 82 100504
[31] Lee C C, Yin W G and Ku W 2009 Phys. Rev. Lett. 103 267001
[32] Lv W C, Wu J S and Phillips P 2009 Phys. Rev. B 80 224506
[33] Yamase H and Zeyher R 2013 Phys. Rev. B 88 180502(R)
[34] Hertz J A 1976 Phys. Rev. B 14 1165
[35] Moriya T 1991 J. Magn. Magn. Mater. 100 261
[36] Yuan H Q et al 2003 Science 302 2104
[37] Hiraishi M et al 2014 Nat. Phys. 10 300

Related articles from Frontiers Journals
[1] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 107401
[2] Chao Mu, Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Hechang Lei, Zheng Li, and Jianlin Luo. S-Wave Superconductivity in Kagome Metal CsV$_{3}$Sb$_{5}$ Revealed by $^{121/123}$Sb NQR and $^{51}$V NMR Measurements[J]. Chin. Phys. Lett., 2021, 38(7): 107401
[3] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 107401
[4] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 107401
[5] Yi Cui, Ze Hu, Jin-Shan Zhang, Wen-Long Ma, Ming-Wei Ma, Zhen Ma, Cong Wang, Jia-Qiang Yan, Jian-Ping Sun, Jin-Guang Cheng, Shuang Jia, Yuan Li, Jin-Sheng Wen, He-Chang Lei, Pu Yu, Wei Ji, Wei-Qiang Yu. Ionic-Liquid-Gating Induced Protonation and Superconductivity in FeSe, FeSe$_{0.93}$S$_{0.07}$, ZrNCl, 1$T$-TaS$_2$ and Bi$_2$Se$_3$[J]. Chin. Phys. Lett., 2019, 36(7): 107401
[6] QIU Long-Qing, LIU Chao, DONG Hui, XU Lu, ZHANG Yi, Hans-Joachim Krause, XIE Xiao-Ming, Andreas Offenhäusser. Time-Domain Frequency Correction Method for Averaging Low-Field NMR Signals Acquired in Urban Laboratory Environment[J]. Chin. Phys. Lett., 2012, 29(10): 107401
[7] MA Long, ZHANG Jin-Shan, WANG Du-Ming, HE Jun-Bao, XIA Tian-Long, CHEN Gen-Fu, YU Wei-Qiang. NMR Study of Superconductivity and Spin Fluctuations in Hole-Doped Superconductor Ca1-xNaxFe2As2 (Tc=32 K)[J]. Chin. Phys. Lett., 2012, 29(6): 107401
[8] ZHANG Xiao-Dong, FAN Guo-Zhi, ZHANG Cheng-Lin, JING Xiu-Nian, LUO Jian-Lin**. 75As Nuclear Magnetic Resonance Studies on Ba(Fe1−xNix)2As2 Single Crystals under High Pressure[J]. Chin. Phys. Lett., 2012, 29(1): 107401
Viewed
Full text


Abstract