Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 107305    DOI: 10.1088/0256-307X/32/10/107305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Waveguide Mode Splitter Based on Multi-mode Dielectric-Loaded Surface Plasmon Polariton Waveguide
CAI Yong-Jing1,2, LI Ming1,2, XIONG Xiao1,2, YU Le1,2, REN Xi-Feng1,2**, GUO Guo-Ping1,2, GUO Guang-Can1,2
1Key Lab of Quantum Information, University of Science and Technology of China, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
CAI Yong-Jing, LI Ming, XIONG Xiao et al  2015 Chin. Phys. Lett. 32 107305
Download: PDF(694KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In photonic integrated circuits, information is usually encoded in the optical path. In this work, based on the multi-mode dielectric-loaded surface plasmon polariton waveguide, we numerically design a directional coupler, which can divide the different waveguide eigenmodes into different optical paths. The results show a possibility to encode information onto different waveguide modes. We also experimentally demonstrate that the splitting ratio of this directional coupler structure can be tuned without changing its size.
Received: 15 April 2015      Published: 30 October 2015
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.20.Bh (Theory, models, and numerical simulation)  
  42.79.Gn (Optical waveguides and couplers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/107305       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/107305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Yong-Jing
LI Ming
XIONG Xiao
YU Le
REN Xi-Feng
GUO Guo-Ping
GUO Guang-Can
[1] Joannopoulos J D, Villeneuve Pierre R and Fan Shanhui 1997 Nature 386 143
[2] Coldren L A et al 2012 Diode Lasers and Photonic Integrated Circuits 2nd edn (New York: Wiley)
[3] Oulton R F et al 2009 Nature 461 629
[4] Davis K M, Miura K, Sugimoto N and Hirao K 1996 Opt. Lett. 21 1729
[5] Politi A, Matthews J C F, Thompson M G and O'Brien J L 2009 IEEE J. Sel. Top. Quantum Electron. 15 1673
[6] Xu Q F, Schmidt B, Pradhan S and Lipson M 2005 Nature 435 325
[7] Marcatili E A J 1969 Bell Syst. Tech. J. 48 2071
[8] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[9] Politi A, Cryan M J, Rarity J G, Yu S and O'Brien J L 2008 Science 320 646
[10] Politi A, Matthews J C F and O'Brien J L 2009 Science 325 1221
[11] Matthews J C F, Politi A, Stefanov A and O'Brien J L 2009 Nat. Photon. 3 346
[12] Peruzzo A, Lobino M, Matthews J C F et al 2010 Science 329 1500
[13] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[14] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
[15] Reinhardt C et al 2006 Opt. Lett. 31 1307
[16] Holmgaard T and Bozhevolnyi S I 2007 Phys. Rev. B 75 245405
[17] Kumar A et al 2013 Laser Photon. Rev. 7 938
[18] Cai Y J et al 2014 Phys. Rev. Appl. 2 014004
[19] Zou C L et al 2011 Opt. Lett. 36 3630
[20] Dong C H et al 2012 Appl. Phys. Lett. 100 041104
[21] Palik E D 1984 Handbook of Optical Constants of Solids (New York: Academic)
[22] Krasavin A V and Zayats A V 2007 Appl. Phys. Lett. 90 211101
[23] Hassan K et al 2013 Phys. Rev. B 87 195428
[24] Holmgaard T et al 2009 J. Lightwave Technol. 27 5521
[25] Zou C L et al 2012 IEEE Photon. Technol. Lett. 24 434
[26] Dong C H et al 2009 Appl. Phys. Lett. 95 221109
[27] Guo X et al 2009 Nano Lett. 9 4515
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 107305
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 107305
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 107305
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 107305
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 107305
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 107305
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 107305
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 107305
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 107305
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 107305
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 107305
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 107305
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 107305
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 107305
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 107305
Viewed
Full text


Abstract