Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 107801    DOI: 10.1088/0256-307X/32/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators
WU Qian-Nan**, LAN Feng, TANG Xiao-Pin, YANG Zi-Qiang
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
WU Qian-Nan, LAN Feng, TANG Xiao-Pin et al  2015 Chin. Phys. Lett. 32 107801
Download: PDF(1096KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators.
Received: 21 April 2015      Published: 30 October 2015
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  42.25.Ja (Polarization)  
  42.25.Bs (Wave propagation, transmission and absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/107801       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/107801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Qian-Nan
LAN Feng
TANG Xiao-Pin
YANG Zi-Qiang
[1] Wang Y, Wu Q, Wu Y M, Zhang K, Li L W and Yin J H 2011 IEEE Trans. Magn. 47 2592
[2] Němec H, Ku?el P, Kadlec F, Kadlec C, Yahiaoui R and Mounaix P 2009 Phys. Rev. B 79 241108
[3] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[4] Huang M, Zhou Y Q and Shen T G 2010 Chin. Phys. Lett. 27 014102
[5] Lan F, Yang Z Q, Qi L M, Gao X and Shi Z J 2014 Opt. Lett. 39 1709
[6] Scalari G, Maissen C, Cibella S, Leoni R and Faist J 2014 Appl. Phys. Lett. 105 261104
[7] Zhang F L, Zhao Q, Liu Y H, Luo C R and Zhao X P 2004 Chin. Phys. Lett. 21 1330
[8] Luo H, Wang T, Gong R Z, Nie Y and Wang X 2011 Chin. Phys. Lett. 28 034204
[9] Cao Z S, Pan J, Chen Z, Zhan P, Min N B and Wang Z L 2011 Chin. Phys. Lett. 28 057302
[10] Wilbert D S, Hokmabadi M P, Kung P and Kim S M 2013 IEEE Trans. Terahertz Sci. Technol. 3 846
[11] Chowdhury D R, Singh R, Taylor A J, Chen H T, Zhang W L and Azad A K 2012 Int. J. Opt. 2012 148985
[12] Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R J, Zhang S, Han J G and Zhang W L 2011 Appl. Phys. Lett. 98 121114
[13] Padilla W J, Taylor A J, Highstrete C, Lee M and Averitt R D 2006 Phys. Rev. Lett. 96 107401
[14] Qin G, Wang J F, Yan M B, Chen W, Chen H Y and Li Y F 2013 Chin. Phys. B 22 087302
[15] Chen C Y and Yen T J 2009 J. Phys. D: Appl. Phys. 42 185402
[16] Kim J, Lee Y U, Kang B, Woo J H, Choi E Y, Kim E S, Gwon M, Kim D W and Wu J W 2013 Nanotechnology 24 015306
[17] Chen H T, O'Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M and Padilla W J 2007 Opt. Express 15 1084
[18] Ekmekci E, Topalli K, Akin T and Turhan-Sayan G 2009 Opt. Express 17 16046
[19] Lu W B and Ji Z F 2011 Chin. Phys. B 20 054101
[20] Zhang Y X, Qiao S, Huang W X, Ling W, Li L and Liu S G 2011 Appl. Phys. Lett. 99 073111
[21] Chen Z and Zhang Y X 2013 Chin. Phys. B 22 067802
[22] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Azad A K, Taylor A J and Chen H T 2012 Appl. Phys. Lett. 101 101102
[23] Al-Naib I, Hebestreit E, Rockstuhl C, Lederer F, Christodoulides D, Ozaki T and Morandotti R 2014 Phys. Rev. Lett. 112 183903
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 107801
[2] Jing Du, Bosai Lyu, Wanfei Shan, Jiajun Chen, Xianliang Zhou, Jingxu Xie, Aolin Deng, Cheng Hu, Qi Liang, Guibai Xie, Xiaojun Li, Weidong Luo, and Zhiwen Shi. Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(5): 107801
[3] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 107801
[4] Sibai Sun, Jianchen Dang, Xin Xie, Yang Yu, Longlong Yang, Shan Xiao, Shiyao Wu, Kai Peng, Feilong Song, Yunuan Wang, Jingnan Yang, Chenjiang Qian, Zhanchun Zuo, and Xiulai Xu. Large Photoluminescence Enhancement by an Out-of-Plane Magnetic Field in Exfoliated WS$_2$ Flakes[J]. Chin. Phys. Lett., 2020, 37(8): 107801
[5] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 107801
[6] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 107801
[7] Lele Wang, Bosai Lyu, Qiang Gao, Jiajun Chen, Zhe Ying, Aolin Deng, Zhiwen Shi. Near-Field Optical Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2020, 37(2): 107801
[8] Pengfei Suo, Li Mao, Hongxing Xu. Quantization Scheme of Surface Plasmon Polaritons in Two-Dimensional Helical Liquids[J]. Chin. Phys. Lett., 2020, 37(1): 107801
[9] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 107801
[10] Jin-Song Huang, Jing-Wen Wang, Yao Wang, Yan-Ling Li. High-Efficiency Quantum Routing in a Multi-Cross-Shaped Waveguide[J]. Chin. Phys. Lett., 2019, 36(3): 107801
[11] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 107801
[12] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 107801
[13] Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 107801
[14] Shun-yu Zhou, Yan-xia Ye, Kun Ding, De-sheng Jiang, Xiu-ming Dou, Bao-quan Sun. Influence of Polar Pressure Transmission Medium on the Pressure Coefficient of Excitonic Interband Transitions in Monolayer WSe$_{2}$[J]. Chin. Phys. Lett., 2018, 35(6): 107801
[15] Yu-Ting Liu, Li-Peng Hou, Shuang-Yang Zou, Li Zhang, Bian-Bian Liang, Yong-Chang Guo, Arfan Bukhtiar, Muhammad Umair Farooq, Bing-Suo Zou. EMP Formation in the Co(II) Doped ZnTe Nanowires[J]. Chin. Phys. Lett., 2018, 35(3): 107801
Viewed
Full text


Abstract