CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators |
WU Qian-Nan**, LAN Feng, TANG Xiao-Pin, YANG Zi-Qiang |
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
|
|
Cite this article: |
WU Qian-Nan, LAN Feng, TANG Xiao-Pin et al 2015 Chin. Phys. Lett. 32 107801 |
|
|
Abstract A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators.
|
|
Received: 21 April 2015
Published: 30 October 2015
|
|
PACS: |
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
42.25.Ja
|
(Polarization)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
|
|
|
[1] Wang Y, Wu Q, Wu Y M, Zhang K, Li L W and Yin J H 2011 IEEE Trans. Magn. 47 2592 [2] Němec H, Ku?el P, Kadlec F, Kadlec C, Yahiaoui R and Mounaix P 2009 Phys. Rev. B 79 241108 [3] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304 [4] Huang M, Zhou Y Q and Shen T G 2010 Chin. Phys. Lett. 27 014102 [5] Lan F, Yang Z Q, Qi L M, Gao X and Shi Z J 2014 Opt. Lett. 39 1709 [6] Scalari G, Maissen C, Cibella S, Leoni R and Faist J 2014 Appl. Phys. Lett. 105 261104 [7] Zhang F L, Zhao Q, Liu Y H, Luo C R and Zhao X P 2004 Chin. Phys. Lett. 21 1330 [8] Luo H, Wang T, Gong R Z, Nie Y and Wang X 2011 Chin. Phys. Lett. 28 034204 [9] Cao Z S, Pan J, Chen Z, Zhan P, Min N B and Wang Z L 2011 Chin. Phys. Lett. 28 057302 [10] Wilbert D S, Hokmabadi M P, Kung P and Kim S M 2013 IEEE Trans. Terahertz Sci. Technol. 3 846 [11] Chowdhury D R, Singh R, Taylor A J, Chen H T, Zhang W L and Azad A K 2012 Int. J. Opt. 2012 148985 [12] Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R J, Zhang S, Han J G and Zhang W L 2011 Appl. Phys. Lett. 98 121114 [13] Padilla W J, Taylor A J, Highstrete C, Lee M and Averitt R D 2006 Phys. Rev. Lett. 96 107401 [14] Qin G, Wang J F, Yan M B, Chen W, Chen H Y and Li Y F 2013 Chin. Phys. B 22 087302 [15] Chen C Y and Yen T J 2009 J. Phys. D: Appl. Phys. 42 185402 [16] Kim J, Lee Y U, Kang B, Woo J H, Choi E Y, Kim E S, Gwon M, Kim D W and Wu J W 2013 Nanotechnology 24 015306 [17] Chen H T, O'Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M and Padilla W J 2007 Opt. Express 15 1084 [18] Ekmekci E, Topalli K, Akin T and Turhan-Sayan G 2009 Opt. Express 17 16046 [19] Lu W B and Ji Z F 2011 Chin. Phys. B 20 054101 [20] Zhang Y X, Qiao S, Huang W X, Ling W, Li L and Liu S G 2011 Appl. Phys. Lett. 99 073111 [21] Chen Z and Zhang Y X 2013 Chin. Phys. B 22 067802 [22] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Azad A K, Taylor A J and Chen H T 2012 Appl. Phys. Lett. 101 101102 [23] Al-Naib I, Hebestreit E, Rockstuhl C, Lederer F, Christodoulides D, Ozaki T and Morandotti R 2014 Phys. Rev. Lett. 112 183903 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|