Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 014207    DOI: 10.1088/0256-307X/32/1/014207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Visibility and Resolution Enhancement of Fourth-Order Ghost Interference with Thermal Light
WEN Feng1, ZHANG Xun1, YUAN Chen-Zhi2, LI Chang-Biao1**, WANG Jing-Da1, ZHANG Yan-Peng1**
1Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049
2Department of Electronic Engineering, Tsinghua University, Beijing 100084
Cite this article:   
WEN Feng, ZHANG Xun, YUAN Chen-Zhi et al  2015 Chin. Phys. Lett. 32 014207
Download: PDF(546KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A scheme for fourth-order double-slit ghost interference with a pseudo-thermal light source is proposed. It is shown that not only can the visibility be dramatically enhanced compared to the third-order case, but also higher resolution is demonstrated if we scan two of three reference detectors in opposite directions with the same speed, meanwhile another two in identical directions where the speed of one reference detector is twice the other. The results show that the visibility and resolution improvement of the fourth-order ghost interference fringe can be applied to the Nth-order ghost imaging.

Published: 23 December 2014
PACS:  42.30.Va (Image forming and processing)  
  42.25.Kb (Coherence)  
  42.25.Hz (Interference)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/014207       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/014207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEN Feng
ZHANG Xun
YUAN Chen-Zhi
LI Chang-Biao
WANG Jing-Da
ZHANG Yan-Peng

[1] Pittman T B et al 1995 Phys. Rev. A 52 R3429
[2] Abouraddy A F et al 2001 Phys. Rev. Lett. 87 123602
[3] Valencia A et al 2005 Phys. Rev. Lett. 94 063601
[4] Scarcelli G et al 2006 Phys. Rev. Lett. 96 063602
[5] Gatti A et al 2007 Phys. Rev. Lett. 98 039301
[6] Zhang M et al 2007 Phys. Rev. A 75 021803
[7] Meyers R et al 2008 Phys. Rev. A 77 041801
[8] Ferri F et al 2005 Phys. Rev. Lett. 94 183602
[9] Xiong J et al 2005 Phys. Rev. Lett. 94 173601
[10] Wang K and Cao D Z 2004 Phys. Rev. A 70 041801
[11] Hong P and Zhang G 2013 Phys. Rev. A 88 043838
[12] Chen X H et al 2010 Opt. Lett. 35 1166
[13] Chan K W C et al 2009 Opt. Lett. 34 3343
[14] Wen F et al 2014 J. Phys. Soc. Jpn. 83 104403
[15] Wen F et al 2014 J. Phys. Soc. Jpn. 83 104402
[16] Agafonov I N et al 2008 Phys. Rev. A 77 053801
[17] Zhou Y et al 2010 Phys. Rev. A 81 043831
[18] Zhou Y et al 2012 J. Opt. Soc. Am. B 29 377
[19] Bai Y and Han S 2007 Phys. Rev. A 76 043828
[20] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[21] Goodman J W 2005 Introduction to Fourier Optics (Colorado: Roberts and Company Publishers)
[22] Wen F et al 2014 Chin. Phys. Lett. 31 114209

Related articles from Frontiers Journals
[1] Dahi Ibrahim and Daesuk Kim. Direct Spatially Resolved Snapshot Interferometric Phase and Stokes Vector Extraction by Using an Imaging PolarCam[J]. Chin. Phys. Lett., 2020, 37(7): 014207
[2] Rui Ma, Shu-Yuan Zhang, Tian-Hao Ruan, Ye Tao, Hua-Ying Wang, Yi-Shi Shi. Scanning-Position Error-Correction Algorithm in Dual-Wavelength Ptychographic Microscopy[J]. Chin. Phys. Lett., 2020, 37(4): 014207
[3] Yu-Hang He, Ai-Xin Zhang, Wen-Kai Yu, Li-Ming Chen, Ling-An Wu. Energy-Selective X-Ray Ghost Imaging[J]. Chin. Phys. Lett., 2020, 37(4): 014207
[4] Ling-Jun Kong, Rui Liu, Wen-Rong Qi, Zhou-Xiang Wang, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Asymptotical Locking Tomography of High-Dimensional Entanglement[J]. Chin. Phys. Lett., 2020, 37(3): 014207
[5] Zhou-Xiang Wang, Yu-Chen Xie, Han Zhou, Shuang-Yin Huang, Min Wang, Rui Liu, Wen-Rong Qi, Qian-Qian Tian, Ling-Jun Kong, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Identifying the Symmetry of an Object Based on Orbital Angular Momentum through a Few-Mode Fiber[J]. Chin. Phys. Lett., 2019, 36(12): 014207
[6] Rui Liu, Ling-Jun Kong, Yu Si, Zhou-Xiang Wang, Wen-Rong Qi, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Multi-Path Ghost Imaging by Means of an Additional Time Correlation[J]. Chin. Phys. Lett., 2019, 36(4): 014207
[7] Xia Hua, Cheng Yang, Ye Huang, Feng Yan, Xun Cao. Localizing and Characterizing Colloidal Particles Scattering Using Lens-free Holographic Microscopy[J]. Chin. Phys. Lett., 2019, 36(1): 014207
[8] Jie-Hui Huang, Tao Peng, Luo-Jia Wang, Shi-Yao Zhu. Simultaneous Measurement of Fringe Visibility and Path Predictability of Wave-Particle Duality[J]. Chin. Phys. Lett., 2018, 35(8): 014207
[9] Jin-Bao Yang, Jian-Guo Liu, Ning-Hua Zhu, Li-Juan Yu. Visual Passive Ranging Method Based on Re-entrant Coaxial Optical Path and Experimental Verification[J]. Chin. Phys. Lett., 2017, 34(12): 014207
[10] Chao Wang, Xue-Feng Liu, Wen-Kai Yu, Xu-Ri Yao, Fu Zheng, Qian Dong, Ruo-Ming Lan, Zhi-Bin Sun, Guang-Jie Zhai, Qing Zhao. Computational Spectral Imaging Based on Compressive Sensing[J]. Chin. Phys. Lett., 2017, 34(10): 014207
[11] Ling-Jun Kong, Yu Si, Rui Liu, Zhou-Xiang Wang, Wen-Rong Qi, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Robust Ghost Imaging Based on Degenerate Spontaneous Parametric Down-Conversion[J]. Chin. Phys. Lett., 2017, 34(5): 014207
[12] Lei Hou, Xiao-Wei Han, Lei Yang, Wei Shi. Terahertz Real-Time Off-Axis Digital Holography with Zoom Function[J]. Chin. Phys. Lett., 2017, 34(5): 014207
[13] Tuo Li, Yi-Shi Shi. Phase-Shifting-Free Interferometric Cryptosystem[J]. Chin. Phys. Lett., 2017, 34(3): 014207
[14] Li-Yun Zhang, Hua-Jie Hu, Xin Yang, Ming-Tao Cao, Dong Wei, Pei Zhang, Hong Gao, Fu-Li Li. The Image Property in an EIT Information Transfer System[J]. Chin. Phys. Lett., 2016, 33(12): 014207
[15] Yu Si, Ling-Jun Kong, Yong-Nan Li, Cheng-Hou Tu, Hui-Tian Wang. Ghost Imaging with High Visibility Using Classical Light Source[J]. Chin. Phys. Lett., 2016, 33(03): 014207
Viewed
Full text


Abstract